ESUOLA TOLICECE 2258

JOAQUIM ANTONIO PEREIRA

PROPOSTA DE UMA ESTRATEGIA DE REENGENHARIA DE SISTEMAS
LEGADOS PARA SISTEMAS ORIENTADOS A OBJETO

Monografia apresentada & Escola
Politécnica da Universidade de Sdo Paulo
para conclusdo do curso de

Especializagdo em Engenharia de Software

Area de Concentragio:

Reengenharia de Software

Orientador:

Prof. Dr. Jorge Luis Risco Becerra

Sdo Paulo - 2003

AGRADECIMENTOS

Ao orientador Prof. Dr. Jorge Luis Risco Becerra pela valiosa orientagdo pelos conselhos,

diretrizes e paciéncia

A minha familia pelo incansdvel estimulo e compreensao.

SUMARIO

LISTA DE FIGURAS 5
LISTA DE ABREVIATURAS E SIGLAS 6
RESUMO 7
ABSTRACT 8
CAPITULO 1 INTRODUGAO 9

1.1 CONSIDERACOES IINICTATS oo evesessoee s mmsssssesss s ssmss s

1.2 OBIETIVOS DO TRABALHO ..ot vveeecueisinssssssesessrssases s st e s s s et
13 ABRANGENCIA DO TRABALHO .ocoorirssisssnssssssss st s st s s s e
1.4 MOTIVA(;AO E JUSTIFICATIV A ooocviianrmseosaimisssssssasessssssemsarss s sy
15 METODOLOGIA wrcercsesimsesssessomsssssisssssss s st s s s
1.6 ESTRUTURA DA MONOGRAFIAecorrieemtmmsrssiasam st st ot
CAPITULO 2 SISTEMAS LEGADOS

21 SISTEMAS LEGADOS. ..oooiissssessinssimmsssssssssssmsammssss st s i e o s
2.2 REENGENHARIA DE 1SS 8 21 - Tt SIS S
2.3 ENGENHARIA REVERSA DE SISTEMAS ..ot
2.4 FORWARD ENGINEERING. ...oocoecenirnsrrsmesssssrssssssssssisiss e et sas s
2.5 “CONVERTER” OU “MIGRAR” SISTEMAS LEGADOS ..o ceeeimmmressnsasmssinniass e
2.6 ELEMENTOS TEORICOS SOBRE O3 SISTEMAS LEGADOS ...coiirmcmimimissernessinene
26.1 Consideragbes sobre os sistemas T s JTRRRERREER TR ED U
262 Categorias de sisiemas legados
2.6.2.1 AplicagGes altamente AECOMPOSES - -creeserssenesrsserrssssss s s e 11
2.62.2 Aplicagbes com dados QB COMPOSIOS e eres oo eessneons s 8r T
2.6.2.3 AplicagBes com programas AECOTPOSIOS 1renssnssssssssssssssssessss s oo
2.6.2.4 aplicagBes ndo RStTULUTAAA OU MOMOIEICAS .ovvressssssesmmsassstnssssssssss st s

26.3 Fundamentos que propiciam a reengenharia de [egA0S ..vwrwwmmwermrmesrss s
263.1 Valor de negécio da aplicagdo legada
2.6.32 Requisitos para desenvolvimento e FLETTBALIARAR oo evvevrrseeeermsaressmsstms s T

2.6.4 Qualidade técnica de uma aplicagio TEAGR. e vverveneessessessssessssssmssssss s s s
2.6.5 Identificar esiratégia para reengenharia de sistemnas 1EEAADS vvevcvvrimrimessensessssssmss e
2.6.6 Estratégia de reengenharia de GISTEMMIAS [EZAGAS oorverissasrreserssmsrssesmsssstssssss s
26.6.1 Ignorar os sistemas TERACLDS . vrvveseeesaesroressss s
2.6.6.2 Rescrever
TR L ———— Lt

3 6.6.4 DL WATEDOUSE vt st 2

T Ty c ey ——————

CAPITULO 3 MODELO PARA REENGENHRAIA DE SISTEMAS LEGADOS 43

3.1 ETAPAS PARAA REENGENHARIA DE SISTEMAS LEGADOS ..o veveremeerniasnnsencenes 44
3.2 PLANEJAMENTO PARA REENGENHARIA DE SISTEMAS LEGADOS Lcivvieeeerenienens 45
33 ANALISES E REQUISITOS DE REENGENHARIA DE SOFTWARE ..o 51
33.1 Conservar a familiaridade entre os sistemas e LSTEATIOS 1o veseresensssnsserecemetbassrapeasassssnssanssesttsnassrssnsas 51
1.3.2 Remodularizar o cddigo legado com funcionalidades em dUPHCALAL .ovvvieerisiisirnsesmsitssesirmsssens i 52
3.3.3 Requerimentos funcionais- erierirereeniinerns 92
34 ARQUITETURA - AMBIENTE PARA REENGENHARIA DE SISTEMAS LEGADOS...52
3.4.] Montagem do AMbemnte OPErACIONAL ...coussurs ersesmemmmmmmmsss it 53
3,42 ADNANSE A8 INVENATIO . errverrvirnrsrsseessssrrrssiorstssmsas s s asas s TS 53
343 Reestruturagio da documentacio doS SISIIIAS..oowrvssisrmsmsissemsm s 54
3.4.4 Revisio do projeto de reengenharia de SIGEETTLES . e vesverererssssnnerseeorsssnssesmsmsssns st rsssass sbanansr s rbsbaamsn s 54
345 Administrar esforco de migragfio — migrar, manter ¢ controlar retraballios ..vecessssirseeceenness 34
346 Criar prottipos.... SOOI BYOUOU ORI).
3.5 REORGANIZAR O CODIGO LEGADO - PROJETO FISICO e irm s seassiisnens 56
3.5.] Restruturagio do cOdigo - Primeira fAse . ..c.covmmriiimmmmmsisssmmmmmss s 57
3.5.2 Otimizagio das transformagdes 59
353 Codigo legado Reorganizadoooeerecen B S e—. .. 11 oot ST - S S
3.6 CONVERSAQO - REENGENHARIA DE SISTEMAS — MIGRAR O CODIGO LEGADO64
3.6.1 Ftapas para migrar c6digo legado procedural para c6digo orientado 2 0BJELO .vrrininirerieness 65
362 PrOQUIOS ZETAADS. crerereeonserrrssssserrecsemes b 66
3.6.3 Anakisar 0 COAIZO JEEAAO ..vovvriivvirereississrims s b T 68
3.7 TESTES DA APLICACAO MIGRADA .oooririimiaissismmsisms st 69
370 TeSteS TIAVIAUALS. crorvveemeessessasionssnesesssermssesssms s b 69
3.7.2 Testes Integrados 69
3.7.3 Validar e Homologar o sistema migrado - comparando TESUMAAOS oo 69

3.8 IMPLANTAR EM PRODUCAQ O SISTEMA LEGADO ooevcciiinimmrsmisinms e 70

CAPITULO 4 CONSIDERACOES FINAIS. 7

A1 CONCLUSOES.....orsoreeseeeesissssssmsessessssissorssssssess s st b s s 71
42 COMENTARIOS GERAIS...coovrovormrriersissrnrcessssessasmsssissssimss sttt st 72
43 TRABALHOS FUTUROS.....oooootcossesmemsssssssessessssomsssssasssss s ssssiass st s s e 72
44 CONTRIBUICAO . .ooororevooeresiesesreseesessssiss s esssoes s 111100 72

REFERENCIAS BIBLIOGRAFICAS 73

LISTA DE FIGURAS

FIGURA 1 SISTEMAS LEGADOS 17

FIGURA 2 PROCESSO DE ENGENHARIA REVERSA wvvereeeesstensesesssrassisssss s atsanasssssmsssssssbestrnan s thassrp ot sassss o 19

FIGURA 3 CATEGORIA DE APLICACOES LEGADAS ALTAMENTE DECOMPOSTA Lcorurusermrensersssmmsrmisisennsss s 30
FIiGURA 4 CATEGORIA DE APLICACOES LEGADAS DECOMPOSTAS POR DADOS - DUAS CAMADAS (oociinraransvnnee 31
FIGURA 5 CATEGORIA DE APLICAQOES LEGADAS DECOMPOSTA POR PROGRAMA — DUAS CAMADAS. . occvazensseens 32

FIGURA 6 CATEGORIA DE APLICAQOES LEGADAS MONOLITICA - COMPONENTES EM UMA UNICA CAMADA 33
FIGURA 7 ESQUEMA PARA ANALISE DE ESTRATEGIAS .o vvvorsveeessssnrsscemsssassras s o sttt sz os 36
FIGURA 8 MODELO DO PROCESSO DE REENGENHARIA DE SISTEMAS wevsvemeesesersssesssssmsrerassississe st seasrsasasessssssssass 45
FIGURA 9 RESTRUTURAGAO DE CODIGO 57
FIGURA 10 CONVERSAO DE SISTEMAS LEGADOS 64

FiGURA 11 TESTES NOS DOIS AMBIENTES E COMPARACAQ DE RESULTADOS ERRO! INDICADOR NAO DEFINIDO.

LISTA DE ABREVIATURAS E SIGLAS

ADABAS Banco de Dados - Software AG

AP Application Programming Interfaces

ATM Asynchronous Transaction Managment
BATCH Técnica de processamento em Lotes — Nzo Online
BMS Base Mapping Suport

CICS Customer Information Control System
COBOL Linguagem de programagao de terceira geragéo
DB2 Banco de Dados IBM

DBMS Data Base Management System

DoD Department of Defence

DOS Disk Operating System

EIB Enterprise JAVA Beans

GuUl Grafical User Interface

HW Hardware

IMS/DC Information Management System Data Communication
JAVA Linguagem de Programacio

JDBC Java Data Base Connective

JSP Java Serve Page

LAN Local Area Network

MFS Message Format Service

00 Oriented Object

PC Personal Computer

PF Program Function

RECOVERY Recuperagdo de arquivos

SElL Software Enginnering Institute

SORT Técnica para classificar arquivos

SYSOUT Relatério em ambiente MAINFRAME IBM
SW Software

T Tecnologia da Informagao

VSAM RRDS Virtual Storage Access Method Relative Record Data Set
VSAM KSDS Virtual Storage Access Method Key Sequenced Data Set
WSAD WebSphere Studio Application Developer

RESUMO

Este trabatho visa apresentar uma proposta para uma estratégia de migracdo de sistemas legados
em tecnologias procedurais, para as novas tecnologias orientado a objetos, tornando mais rapido,
seguro e (ransparente a absor¢io dessas tecnologias pelas organizacdes assim como propiciar
economia de tempo e dinheiro em processos de migracio. Como cssa estratégia ¢ de uso
especializado e, pode ser aplicado a qualquer linguagem de programagio, foi direcionado para o
dominio da linguagem COBOL por meio da criagio de algumas diretrizes. Com a engenharia
reversa finalizada, o processo de reengenharia pode ser iniciado objetivando-se a disponibiliza¢ao

dos sistemas legados monoliticos €m sistemas em trés camadas € em ambiente baseado na WEB.

ABSTRACT

The aim of this monograph is to present one strategy of migration of legacy systems “oriented
procedure” technologies, for new object oriented technologies, becoming faster, safer and
more transparent the absorption of these technologies by organizations and to appease time
and money economy in migration proccess. As this strategy is specialized use and, can be
applied for any program language, it was specialized for the COBOL language dominion by
mean of creation of some policy. With the reverse engineering, the process of reengineering
can be started objectifying the availability of monolitics legacy systems in three layer

systems in a WEB based environment.

CAPITULO 1 INTRODUCAO

Este capitulo visa apresentar as consideracbes iniciais, 0S objetivos, a abrangéncia, a
motivagdo, a justificativa, a metodologia, a revisdo da literatura consultada, bem como a
estrutura desta monografia, dentro do contexto do tema “pROPOSTA DE UMA
ESTRATEGIA DE REENGENHARIA DE SISTEMAS LEGADOS PARA SISTEMAS
ORIENTADOS A OBJETO”.

1.1 CONSIDERACOES INICIAIS

~

A grande maioria das aplicagdes de sistemas de informacdes existente atualmente, ¢ aplicages
velhas, desenvolvidos entre 0s anos 70 ¢ meados dos anos 80 ¢ mostram sinais de sua idade, €
anos de remendos e consertos. Geralmente esses sistemas sao vitais para a sobrevivéncia das
organizag0es. Contudo estd se tornando cada vez mais caro, a sua operagio € manutengfio. Alguns

sistemas levam meses para simples melhorias [28].

As pressdes de negbcios para prover flexibilidade e informagdes oportunas € concisas para o
gerenciamento de decisdes e suporte operacional de crescimento, as aplicagoes legadas sdo

inadequadas para ¢sse fim.

Contudo, manter aplicacdes legadas estd dificil para muitas organizacdes € ndo podem ser jogados
fora; & dificil jogar fora aplicagOes que suportam servigos criticos tais como: Faturamento, Folha
de Pagamento, Ativo Fixo, Contas a Pagar ¢ Receber. Este é o dilema, e estd cada vez mais dificil

conviver com eles; também nao se pode viver sem eles [28 1.

Desenvolver sistemas a partir “do szero” & na majoria das vezes, mais dificil do que quando existe
algo pronto para scr usado como base. Em muitos sistemas legados pode-se aproveitar a estrutura
geral de um programa existente, médulo para a montagem de menus, relatorios , consultas € a

estrutura de operacOes de acessos € manutengdo de data bases ou arquivos [21).

As organizagdes acumularam ao longo de anos de trabalho muito coédigo de programas, que
podem servir de base para a elaboragio de novos sistemas. Contudo, desenvolver sistemas dessa
forma pode induzir o desenvolvedor a erros ou problemas, tais como: aproveitamento de codigo
sobre cédigo, deixa o sistema ineficiente; sistemas diffceis de manter; descaracterizagio do

sistema original, que talvez fosse mais pratico partir para um desenvolvimento a partir do zero.

10

Além do aproveitamento do cddigo deve-se aproveitar também as documentagoes de andlise ¢ de
projeto, pois na construgao de um sistema, sabe-se ser €ssa as etapas que mais consomem esforgos
para serem elaboradas e poderiam ser reutilizadas em novos desenvolvimentos. Essas
documentactes de andlises e projetos devem ser sintetizadas em padrdes , tanto de ¢odigo, como

anélise ou mesmo de projeto.

Sistemas aplicativos dentro dos conceitos da tecnologia Orientado a Objetos tornam amigiveis as
tarefas do dia a dia da Tecnologia da Informagdo, e fornam simples os processos de
desenvolvimento ¢ manutengdes de sistemas, melhorando a qualidade dos programas; ¢ COmO
resultado final, obtém-se sistemas aplicativos estiveis e de melhor qualidade apresentando

menores custos de manutengio.

1.2 OBJETIVOS DO TRABALHO

Este trabalho tem por objetivo principal apresentar uma “cstratégia” de migragdo dos sistemas
legados para sistemas orientados a objetos como uma alternativa de substituiciio de sistemas

legados.

Sistemas orientados a objeto sdo de amplo dominio da comunidade da Tecnologia da Informacio,
e todos sabemos que sistemas orientados a objeto sio sistemas que devido as suas caracteristicas
da tecnologia possuem uma certa facilidade a sua manutengio, possibilitando as corporagdes que

utilizam essa tecnologia tornarem-se mais competitivas através dos sistemas de informagao.

Redesenvolver todo o legado de sistemas numa corporagiio, € uma tarefa extremamente cara,
demorada ¢ que nem sempre € possivel, pois as organizagdes t&m problemas em manter 08 seus
sistemas legados, pois a dindmica a que estio submetidas impossibilitam as corporagoes de
redesenvolver os seus sistemas legados, também pelo alto custo de desenvolvimento de novos

sistemas.

Um ouiro objetivo deste trabalho ¢ propiciar e incentivar a construgdo de ferramentas que
possibilitein reescrever programas, a partir de cédigos legados procedurais, transformando esses
codigos em programas orientados a objeto, com grande produtividade e sem introduzir erros de

regra de negécios, ¢ essa tarefa ndo é uma atividade trivial.

11

13 ABRANGENCIA DO TRABALHO

A abrangéncia desta monografia estard contida no contexto da Reengenharia de software
aplicativos de toda natureza, a SeT aplicado em projetos para 0 re-aproveitamento de codigos

legados nas corporagoes.

Um processo de reengenharia é igual a qualquer oufro processo no qual as técnicas e padrdes t€m
emergido em cada processo, aplicando-se a virias necessidades da reengenharia, objetivando

custos beneficios mais atraentes Nesses processos.

O produto final deste trabalho e apresentar uma estratégia para ser aplicada a qualquer linguagem
de programagdo para incrementar e melhorar a qualidade nos processos de reengenharia,
permitindo uma padronizacio nesses processos de migrar sistemas legados, reduzindo custos €

riscos ¢ incrementando a sua produtividade.

1.4 MOTIVACAOE JUSTIFICATIVA

Esta monografia tem como motivagio os seguintes objetos: uma proposta de uma estratégia
de reengenharia de sistemas jegados para sistemas orientados a objeto e a integragao com

ferramentas para reescrever sistemas legados.

O alto custo, prazos muitos longos incompativeis com as necessidades das corporagbes para re-
desenvolvimentos de Sistemas, pressdes nos negdcios, tornam a alternativa da reengenharia de
sistemas legados uma alternativa atraente no que diz respeito a [€mpo € custo, justificando sobre

maneira o desenvolvimento desse trabalho.

Qutra motivagio é que cste trabalho ajudard as corporagOcs a repensar em alternativa da
reengenharia de sistemas legados como uma forma de atingir os seus objetivos na utilizagdo dos
seus sistemas aplicativos como suporte a0s SCus negécios, evitando altos custos cm TI, para ©

desenvolvimento de sistemas a partir do “zero”.

O alto custo de desenvolvimento de novos sistemas, as pressoes de negocios, a Internet, e a
globalizagao justificam plenamente a elaboracio de um modelo de reengenharia de sistemas

legados para sistemas orientados a objeto.

12

1.5 METODOLOGIA

No desenvolvimento dessa monografia foram adotadas as seguintes fases que nortearam a

metodologia utilizada.

>

Pesquisa: Nesta fase foram efetuados levantamentos e sclegio da bibliografia utilizada
nessa monografia ¢ que foram consideradas relevantes. Foram consultados artigos pela
Internet bem como obras de autores especializados no assunto, sendo muito intenso no

infcio dos trabalhos.

Anilise do modelo de sistemas: Nesta etapa obteve-se 0 conhecimento dos modelos de
sisternas para a defini¢éo das estratégias a serem utilizadas nos processos de reengenharia

de sistemas legados.

Modelagem para a reengenharia de legados: Fase em que a reengenharia dos sistemas
legados serd aplicada para o a geragdo de sistemas orientados a objetos. Todos os
conhecimentos dos sistemas, extraidos na fase anterior irdo alimentar todo O processo

para a reengenharia desses sistemas legados.

Transformagdo dos legados: Etapa em que 0 cédigo legado procedural serd transformado
em codigo orientado a objetos, sem que as funcionalidades ¢ objetivos dos programas

sejam afetados.

Elaboracdo da Monografia: Consistiram de pesquisas em livros sobre sistemas legados,
artigos encontrados na internct sobre o tema em questdio e por experimentos na drea de
reengenharia de sistemas legados, bem como a valiosa orientagdio do Prof. Dr. Jorge

Becerra.

1.6 ESTRUTURA DA MONOGRAFIA

Esta monografia estd organizada como segue.

»

Primeiro Capitulo: Sio apresentados as consideracbes iniciais, os objetivos, a

abrangéncia, a motivagdo, a justificativa e o método utilizado para a elaboragdo deste

trabalho.

13

5 Segundo Capitulo: E abordada a base tedrica com o objetivo do entendimento dos
conceitos de Sistemas legados. Também serdio apresentados os conceitos de migracio de

sistemas.

¥ Terceiro Capitulo: E apresentada uma proposta de uma estratégia de reengenharia de

sistemas legados para sistemas orientados a objetos, como um modelo de estudo de caso.

» Quarto Capftulo: Serdio apresentadas as conclusdes, os comentdrios, trabalhos futuros e

em que esta monografia pode contribuir.

14

CAPITULO 2 SISTEMAS LEGADOS

Neste capitulo serdo discutidas as teorias que serviram de base para o entendimento de
sistemas legados nas corporagdes e a convergéncia para a Reengenharia desses Sistemas

Legados, para Sistemas Orientados a Objeto.

No item 2.1 sera abordado, o que ¢ sistema legado, tanto do ponto de vista da lingiiistica
como do ponto de vista conceitual da tecnologia da informagio, bem como conceitos de

reengenharia de sistemas, de engenharia reversa de sistemas, ¢ de engenharia avante.

No item 2.2 serio abordados os elementos sobre sistemas legados, envolvendo
consideracbes sobre sistemas legados, paradigmas entre outros, sobre linguagem Cobol,
definida como uma linguagem obsoleta, a manutenibilidade de software, as categorias e (ipos
de sistemas legados nas organizagbes a partir de uma perspectiva de reengenharia de
aplicagdes e como elas sfo classificadas. Serdo abordados também e fundamentos .que

propiciam a reengenharia de sistemas legados.

No item 2.3 serd abordados sucintamente os conceitos e principios de padroes (Pattern)

para processos de reengenharia de sistemas legados, para sistemas orientados a objetos.

> Algumas defini¢cdes conceituais

Neste capitulo sdo apresentadas algumas definicdes conceituais sobre termos utilizados para
definir o que § um sistema legado, o que € reengenharia de sistemas, o que € engenharia
reversa de sistemas, e o que é engenharia avante, bem como as diferengas entre migrar e

converter.

2.1 SISTEMAS LEGADOS

A discussio conceitual do que seja um sistema legado € ampla, mas de acordo com 0
diciondrio [Aurélio] , na lingua Portuguesa o termo legado significa “objeto que alguém
deixa a outrem, aquilo que alguém transmite a outrem , aquilo que uma geragdo, escola

literéria, ctc, transmite a posteridade™.

Ainda no campo lingiiistico na lingua inglesa, segundo o [Webster Dictionary] , “legado &

alguma coisa de valor recebido de um ancestral ou de um predecessor ou do passado”. O

15

termo legado pode ser e estd sendo usado em muitos contextos, tais como: Legados LANSs,
tratam de legados de redes Ethernet LANs ; Legados sistemas operacionais, tratam do PC
DOS e Legados de estilos de gerenciamento, tendo-se como exemplo o Taylorismo, que foi 0

movimento de gerenciamento cientifico, defendido por Frederyck Taylor [28 1.

A expressio legado é também usada para indicar que alguma coisa ndo esti na moda,
tomando-se como por exemplo, um sistema que ndo esteja construido na linguagem de
programagio JAVA, embora tenha sido construido o mais recente possivel, seja tratado como
um sistema legado; uma aplicagfo legada, ¢ uma aplicagdo que tem o seu valor herdado do

passado [28].

Aplicagdes legadas também sao definidas como “grande sistemas de software que ndo

sabemos como conviver sem eles, e sdo vitais para as organizagoes “[31

“ Qualquer sistema de informagfo que resista significamente a modificagbes e evolucdes
para atender novas e sucessivas mudangas de c6digo para atender aos requerimentos das

regras dos negéeios™ “. [517

Existem autores que sdo bem especificos para definir um sistema legado: “qualquer aplicagao
que esteja em produgdo”. [24], isto &, iodo e qualquer sistema quer ele esteja construido na

mais avangada tecnologia ou ndo.

“Pode-se definir aplicacdes legadas como qualquer software disponibilizado na produgéo
independentemente da plataforma que ele esteja sendo utilizado, da linguagem em que ele foi

escrito ou do tempo que ele tenha sido posto em producdo” [27).

Segundo o Forrester Research Survey conduzido pela IBM em 1993, 80% dos Bancos de
Dados das corporagdes estavam armazenados em IMS/DB, gerenciador de Banco de Dados

da IBM, projetado no inicio dos anos 60.

Especificamente, aplicagbes ou sistemas legados sio classes de aplicagbes que sdo segundo

[(4L[3L[11]el16]:
¥ Crucial no dia-a-dia das corporagdes;

% Houve muito investimento durante muitos anos ¢ que nfo podem simplesmente ser

jogado fora;

% Mais de 200 Bilhdes de lirhas de c6digo e milhdes de programas;

16

3 Usados diariamente em muitos milhdes de transagdes ATMs, Batch ou on-line;

» Nio estdo bem documentadas e dificultam o seu entendimento para manutencoes

corTetivas e evolutivas;
% Inflexivel, dispendioso, consumindo muito tempo ¢ riscos para manutengo e mudancas;

» Estd baseado em tecnologias “velhas” de Bancos de Dados e arquivos indexados ou

seqiienciais;
% Escritos em linguagens de programagao também “velhas™;
% Interface de usudrios com telas no formato texto, a0 invés de GUI
» Integradas verticalmente ¢ construidas de forma monolitica;

» Sdo repositérios de anos de experiéncias e praticas de negdcios das corporagdes,

envolvendo muitas regras de negdcios embutidas nos cédigos legados.

Nota-se que através dos anos, oS sistemas legados incorporaram substanciais conhecimentos
das corporagdes, envolvendo necessidades de mudancas, desenho da aplicagio e regras de

negocios.

Contudo, o conhecimento das regras de negéeios e decisdes técnicas muitas vezes ndo estdo
documentadas e se encontram embutidas nos cédigos dos sistemas legados. Tais
conhecimentos sfo dificeis de serem recuperados depois de anos ¢ décadas de operagdes
destes sistemas bem como pelas mudangas do pessoal envolvidos na sua construgio. Grande
parte do cédigo dos sistemas legados fol desenvolvido em linguagens (hoje visto) arcaicas,
escritas entre 10-25 anos atrds ¢ provavelmente sem metodologias de desenvolvimento,
tornando a sua manutenibilidade dificil e cara. O resultado disso sdo sistemas legados que
apresentam deficiéncias € custos elevados para o atendimento de mudancas da demanda,
geradas pelas necessidades impostas ao sistema, seja ela evolutiva, corretiva ou em fungdo de

novas tecnologias a serem implementadas nas corporacGes.

Na visdo de um usudrio de um de sistema, qualquer aplicacio, esteja ela numa plataforma
cliente/servidor, na plataforma Mainframe ou ¢m uma plataforma PC ,esse Sistema ao entrar
em produgio, seja considerada um sistema legado. A figura abaixo sintetiza esses conceitos

de Sistemas Legados.

17

Figura 1 sistemas legados

o
Dados

Usuério

2.2 REENGENHARIA DE SISTEMAS

A reengenharia tem por finalidade examinar e alterar um sistema existente para reconstrui-lo
em uma nova forma e depois implementd-lo em uma nova formal{ 9] A reengenharia tem
como objetivo principal methorar a qualidade global do sistema, mantendo, em geral, as
funcdes do sistema existente. Mas a0 mesmo tempo, pode-se adicionar novas fungdes €
melhorar o desempenho [20 1. Segundo Jacobson [13], a reengenharia consiste da
engenharia reversa , seguida de mudangas no sistema (que podem ser mudangas de
funcionalidade ou mudangas de técnica © de implementagdo) e seguida da engenharia
forward. Ou seja, “reengenharia ¢ 0 processo de criar uma descrigdo abstrata do sistema,
elaborar mudancas em alto nivel de abstracio ¢ entéo implement4-1a no sistema” [21]. De
acordo com Sneed [23 1, a reengenharia engloba a reengenharia do procedimento
empresarial, a reengenharia dos dados a reengenharia do software, € 4 reciclagem (que
produz componentes reusdveis, de maneira andloga a0 Pprocesso de retirada de pegas

aproveitiveis de um automével abandonado).

Uma das grandes motivagdes para a aplicaciio da reengenharia de sistemas legados € a

diminuigdo dos altos custos de manutengio de sistemas que se devem a diversos fatores [28].

18

A manutengio continua faz com que a implementacao torne-se inconsistente com o projeto
original, o c6digo torne-s¢ dificil de entender e sujeito a muitos erros. Além da
documentagdo desatualizada. As linguagens de programacdo em que esses sistemas legados
foram implementados estao ultrapassadas, nao havendo suporte por parte dos seus fabricantes
e 0 ensino destas linguagens pelas universidades contribuindo dessa forma, para a scassez

de profissionais que as dominem.

Assim a recngenharia torna-se uma 4rea interessante para ser explorada dentro do campo da
engenharia de software. que objetiva melhorar a produtividade ¢ qualidade dos processos de
“modernizacio’’ de software. Para cumprir tal objetivo a reengenharia de software precisa
entender corretamente 0s programas existentes, a partir dos cédigos fontes e documentagio
disponiveis, para facilitar a realizacdo de mudancas ¢ reconstrugio do software numa nova
tecnologia. Portanto, 0 propésito da reengenharia de software é facilitar a execugdo de
mudangas e corregdes, a recuperacio do desenho em um nivel mais alto de abstragao, ©

redesenho e a reprogramago de um software.

2.3 ENGENHARIA REVERSA DE SISTEMAS

A engenharia reversa produz uma imagem de “orificio mégico”. Alimentamos uma listagem
fonte, desestruturada, 080 documentada, no orificio e no outro extremo sal uma
documentacio completa para o programa de computador. Infelizmente 0 orificio mégico ndo

existe [20]

Engenharia Reversa normalmente é empreendida com o objetivo de reprojetar um sistema
para melhorar a sua manutengio ou produzir uma cépia de um sistema scm acesso as

informacdes de seu projeto original.

A engenharia reversa € uma drea de interesse emergente principalmente pelo volume de
sistemas legados que precisam evoluir. Diz-se Engenharia Reversa porque, a0 contrario da
engenharia tradicional, partimos do produto para a sua defini¢do. Portanto, antes de evoluir
um determinado sistema de software, faz-se necessario reverte-lo a descrigdes mais abstratas
com o objetivo de facilitar a compreensdo do que o sistema ¢, como ele funciona e como nao
funciona, para s6 entao modificé-lo. Como se trata de um processo € niio de um ferramental,
a Engenbaria Reversa pode ser aplicada a cada um dos trés aspectos principais de um

sistema: dados, processo e controle.

cédigo fon

A scguir ¢ apresentado na figura 2 o fluxo do pro

te original, extraidos todos 08 processos de um programa mon

em camadas.

Cédigo fonte sujo

v

Restauragdo do
Cadigo

{

Cédigo Fonte limpo

Extracio de
abstracéo

!

Especificagiio inicial

)

Refinar e
Simplificar

|

Especificacio final

19

cesso de engenharia reversa, que através do

olitico e ja separados

Processato

I

Interface

I

Base de
Dados

Figura 2 Processo de Engenharia Reversa

2.4 ENGENHARIA AVANTE (FORWARD ENGINEERING)

E também chamada de renovagdio. Ndo apenas recupera as inform

stitui num esforgo para aprimorar sua qualidade. O software que

mas o altera e 0 recon

acOes do software existente

passa

20

por reengenharia implementa fungdes do sistema existente e também adiciona ¢/ou melhora a

sua performance nas fungdes que j4 existiam e que foram mantidas.

2.5 “CONVERTER” OU “MIGRAR” SISTEMAS LEGADOS

Ser4 essa € uma questdo de semantica, ou existe diferengas entre o que ¢ migrar para o que €
converter? Profissionais de TI, normalmente usam os dois termos quando se referem a um
processo de “reengenharia” de sistemas. Segundo o dicionério [AURELIO] na lingua
portuguesa, a palavra sconverter” ou na lingua inglesa a palavra “conversion”
semanticamente essas duas palavras tem O MESMO significado — “fazer mudar para,
transformar algo em alguma coisa” ”. J4 a palavra “migrar” na lingua portugucsa ou
“migrate” na lingua inglesa, semanticamente também tem o mesmo significado — “mudar
de lugar”. Assim, é possivel deduzir que semanticamente €ssas palavras ndo tem nada a ver
uma com a outra, mas no entanto, erradamente, sdo usadas quando alguém expressa 0 desejo

de fazer reengenharia em sistemas legados.

Apesar de terem significados diferentes as duas palavras sdo amplamente utilizadas para
gXpressar as mesmas necessidades de mudangas de sistemas, ou processo de mudangas, como
por exemplo, conversao do bug do milénjo ou migrar oS sistemas legados procedurais para
sistemas orientado a objeto. O que se percebe € que “converter” é amplamente utilizado em

projetos de menor impacto e “migrar” em projetos de maior impacto.

Migrar ou converter remetem a uin processo de recngenharia de sistemas. Os autores
constantes na bibliografia, cujas obras forneceram os subsidios teéricos que serviram de base
para essa dissertacao, utilizam a palavra “reengenharia” para expressar mudancas num
software. Assim, exploraremos alguns conceitos de vérios autores do que vem a ser a
“reengenharia” que t€m por finalidade examinar e alterar um sistema existente para

reconstrui-lo em uma nova forma e depois implementi-lo em uma nova forma{9).

A reengenharia tem como objetivo principal melhorar a qualidade global do sistema,
mantendo em geral as fungbes do sisiema existente. Mas, a0 mesmo tempo, pode-se
adicionar novas fungdes e melhotar o desempenho [20 1 . Segundo Jacbson [13], a
reengenharia consiste da engenharia reversa, seguida de mudangas no sistema e seguida da
engenharia avante. Assim a “reengenharia” € 0 processo de criar uma descrigio abstrata do

sistema, elaborar mudangas em alto nivel de abstragdo e entao jmplement4-las no sistema. A

21

“reengenharia” engloba a reengenharia do procedimento empresarial, a reengenharia dos
dados, a reengenharia do software, € a reciclagem (que produz componentes reusédveis de
maneira andloga ao processo de retirada de pegas aproveitdveis de um automével

abandonado).

Uma das grandes motivagdes para a aplicacio da reengenharia ¢ a diminuigio dos altos
custos de manutencio de sistemas, que se devem a diversos fatores [28]. As manutengdes
constantes descaracterizam os sistemas sobre maneira tornando inconsistente com o projeto

original, cédigo fontes dificeis de serem entendidos, mantidos e sujeitos a erros.

2.6 ELEMENTOS TEORICOS SOBRE OS SISTEMAS LEGADOS

Apresentar os elementos que compde uma base tedrica dessa dissertagdo sobre 0s sistemas
legados, € © principal objetivo desse capitulo. O entendimento sobre paradigmas que

envolvem sistemas legados é apresentado para servir de base ao capitulo 3.

A seguir, sdo apresentados conceitos necessdrios para elaborar uma proposta para uma

estratégia de reengenharia de sistemas legados.

2.6.1 Consideracbes sobre os sistemas legados

As diferentes arquiteturas dos sistemas legados onde esses sistemas foram desenvolvidos, nas
mais diversas iecnologias tanto de Hardware como de Software e nas mais diversas
metodologias de desenvolvimento de sistemas, podem dar uma idéia de uma “torre de babel”
na drea de TI, prevalecendo uma idéia de descontrole dos profissionais de TL. Antes de
detalhar as vérias arquiteturas de sistemas legados enconirados, ¢ importante salientar as

falsas idéias sobre sistemas legados.

Desinformagdes sempre circundam os debates a respeito desse tema “‘sistema legado™. Elas
sdo originarias de vérias fontes, muitas das quais tém pouca experiéncia prética de trabathos
com estes tipos de sistemas ou podem ter planos de novo desenvolvimento ou compra de
solugbes prontas no mercado (pacotes) que limitam 2 importincia do papel dos sistemas

legados dentro da empresa [271].

22

Com o advento das novas tecnologias, em especial: da internet, de sistemas orientados a
objeto e de aplicagbes cliente/servidor, entre outras, tornam qualquer sistema legado alvo de
“discriminacio tecnolégica’ dentro da organizacdo, interferindo por vezes na evolugho

desses sistemas’.

Aceitar estes mitos reduz perigosamente a capacidade de uma organizagdo em fornecer
solugdes de negécios onde o tempo & fator critico. Subestimar o valor das arquiteturas de
negécios e suas complexidades resultard em uma demora ou falha de uma grande variedade
de iniciativas de negdcios. Reconhecer esses desafios, por outro lado, é o primeiro passo para
a criagdo de uma estratégia de transformagdo da arquitetura legada, que fornecer4 solugdes de

negécios criticos, nos {empos ou prazos requeridos pelos usuérios [271.

A seguir, sdo apresentadas as consideragdes que envolvem oS sistemas legados nas

corporagdes [27].

> AplicacOes legadas agregam poucos valores ao0s negbcios

Aplicagdes legadas sdo o sangue da vida das empresas, porque elas processam no dia a dia os
dados criticos dessas corporagdes. A maioria dos sistemas legados estdo escritos em
linguagens tidas como de terceira geraco. Segundo Stephanie Wilkinson, “estas aplicagdes
escritas em sua grande maioria em COBOL processam até 85% de todo os negécios global”
[26 . Se estas aplicagdes repentinamente desaparecerem COmMO num passo de mdgica, seria
uma catdstrofe para as empresas. Reconhecer o0s sistemas legados como importante ativo da
empresa é 0 primeiro passo na criagio de uma estratégia que trate os desafios relacionados
com esses sistemas legados. Sem divida nenhuma, esses legados agregam valores aos
negdcios nas empresas, pois sem esses legados as organiza¢des ndo teriam evoluido em seus

negocios [27 1.

Também se percebe uma falsa idéia de que sisternas “velhos” ndo agregam valores aos
negdcios das empresas por comparar-se, precipitadamente ou sem nenhum critério, ¢sses
sistemas legados com sistemas voltados a tecnologias WEB, como s6 0s sistemas voltados &

internet agregassem valores aos negdcios das corporagoes .

23

% Sistemas em web substituem rapidamente sisternas legados

Sistemas baseados em WEB estiio com alguma rapidez substituindo os sistemas legados nas
organizagdes. Os front ends bascados em WEB podem parecer estar substituindo aplicagdes
legadas, mas o volume de transages on-line de sistemas legados continua crescendo. A
estrutura de processamento mais usada nestas transagdes é o CICS (Customer Information
Control System) da IBM que alcangou a marca de 20 bilhdes de transagdes processadas por
dia, dados de 1998. Isto era mais que © total de acessos por dia da internet nesse mesmo
periodo. Se os sistemas legados estivessem sendo substitufdos com parece, poderia se esperar
que houvesse uma redugao de transagdes on-line, sob CICS, o que de fato ndo aconlcceu.
Prova disso é que por volta do ano 7000 a IBM anunciou que o niimero de transagdes CICS
que eram processadas diariamente, ultrapassava os 30 bilhdes de transagfes, um acréscimo

de 50% sobre a quantidade processamento desse tipo de transagdes no ano de 1998.

O nimero de clientes que passaram a utilizar o CICS também cresceu, de 30.000 licencas
CICS em 1.993, para 50.000 licengas em 1.999. Todos estes dados acima mencionados
foram publicados no artigo "The Evolution of CICS: 30 Years Old and 5Stil Modern” por T.
Scott Ankrum em The Cobol Report. Nota-se com clareza que o CICS continua sendo
utilizado como suporte principal da maioria dos sistemas comerciais para o processamento de

suas transagdes on-line. E continua a crescer. [271].

» Cobol é uma linguagem obsoleta

O Cobol é uma linguagem nfio mais usuval, est4 obsoleta e ndo tem sido melhorada ou
evoluida. Universidades Americanas tiraram o COBOL de seus curriculos, por considerarem
ser uma linguagem obsoleta. Ao contrério, existem no mundo mais de 200 bilhdes de linhas
de c6digo Cobol, representando mais de 60% dos cédigos de software existentes no mundo [

27].

Segundo Stephanie Wilkinson, em seu artigo referenciado no item 2.2.2 as aplicagdes Cobol
tem também uma expectativa de crescimento de 5 bilhdes de linhas de c6digo anualmente e
15% de todas novas aplicagdes que funcionardo nos préximos 5 anos serfio escritos em Cobol

[27].

Contudo o Cobol evoluiu, permitindo criar programas orientados a objetos e voltados para a

Web. Também jd hd algumas Universidades Americanas que estdo mantendo em seus

24

curriculos 0s cursos para formar programadores Cobol, porque hd ainda muito espago para

essa linguagem [27].

Sob o prisma dessas informagGes, como pode entio muitos profissionais da tecnologia da
informagdo afirmarem que o Cobol ¢ uma linguagem morta? S6 a falta de informagdes
podem permitir tal engano. No Brasil, nota-se, que em grandes centros de tecnologia da
informagio o Cobol serd ainda por muitos anos utilizado, até porque 0S negocios dessas
corporagdes, do tipo missao critica, ainda s3o confiadas o seu desenvolvimento na linguagem

Cobol, em detrimento de outras linguagens.

% Dados legados podem ser acessados pela web

Dados de sistemas legados armazenados podem ser aproveitados para serem acessados por
aplicacdes disponibilizadas na WERB. Esses dados legados por vezes estao definidos de forma
redundante ¢ inconsistente. As estruturas de dados de sistemas legados devem ser avaliados
com relagio a sua consisténcia pois, no mesmo dado, tendo-se como exemplo um nimero de
cliente ou telefone podem significar diferentes coisas para diferentes unidades de negdcios.
Estas atividades juntam-se ao fato de que algum destes dados contém valores invélidos ou
inconsistentes. E nesse processo, de criar diferentes interfaces para acessar estes dados
através da WEB, pode ser uma proposi¢io arriscada, com resultados que possam afetar a

credibilidade da Web na empresa [27].

3 A funcionalidade dos sistemas legados j4 ndo atende mais

A funcionalidade de sistemas legado ndo séo mais vilido. Este é provavelmenie 0 maior € ©
dos mais falsos conceitos sobre sistemas legados. Estas funcionalidades podem ser diticeis
para entender a sua engenharia, ser também dificeis de se integrar (fora de um ciclo normal
de processo) a outros sistemas legados, ou ter sido definido redundantemente, muito embora
o c6digo ¢ a regra do negéeio do legado funcione muito bem € seja seguro. Nas empresas, a
maioria dos sistemas legados contém regras de negécios que nio podem Sser modificados
dinamicamente para atender aos novos requerimentos que atenda a evolugdo de novas

funces ou de negéeios, das empresas [271].

25

Entdio, porque esses Sistemas ainda continuam sendo utilizados nas empresas? Por qué ndo
foram descartados ou substituidos por soluges de software prontas “pacotes” Ou NOVOS

desenvolvimentos?

¥ Adaptar sistemas legados atende novos negdcios na web

Adaptar sistemas legados ndo atende novos negécios na WEB, pois & fragmentagfo funcional
dos sistemas legados que circunstancialmente sdo causadas pela evolugio hierdrquica €
desordenada das estruturas dos sistemas ¢ dados legados, criaram uma situacio onde 08
sistemas legados cumprem as suas tarefas gradativamente. Cada sistema executa uma etapa
de um processo maior e outras etapas subseqiientes sdo confiados a outros sistemas para

continuar o ciclo ou o processo. S&o sistemas com forte interagao entre si.

Esta abordagem estd em conflito direto com as necessidades de sistemas no ambiente e-
business que acionam regras de negécio e acesso a dados sob demanda. Sistemas legados
adaptados para WEB podem atender requisitos de curto prazo sendo, pois uma atividade
legitima de desenvolvimento de aplicagdes. Porém, 0s requisitos de longo prazo de funcdes
chave neste ambiente ndo serfo atendidas dentro da empresa. Um plano de transformacio

mais amplo € necessario para alcangar este objetivo [271

% Novos sistemas desenvolvidos podem ignorar sistemas legados

Nido se pode ignorar 0S sisternas legados. Estudos (notadamente feito por Gane ¢ Sarson)
tém demonstrado que novos sistemas “herdam” 80% ou mais da funcionalidade dos
sistemas existentes. Mesmo que fosse entre 40% e 50%, das regras de negécios que existem ¢
estio embutidos num c6digo de um sistema legado, mesmo assim, tenderia a dificultar a
reprodugdo em qualquer grau de exatidio das funcionalidades de um sistema legado.
Qualquer esforo de reconstruir ou substituir um sistema legado, em todo ou em parte, deve-
se ter total dominio das regras de negdcios para serem colocados no novo sistema que estd
sendo reposto ou reconstruido. O entendimento de um sistema legado é o requerimento

minimo para determinar que porgao desse sistema legado precisa ser reconstruido [27].

26

% Manutenibilidade de software

A manutenibilidade pode ser definida qualitativamente como a facilidade com que um
software pode ser entendido, corrigido e adaptado. A manutenibilidade é a meta primordial
que orienta 0s passos de um processo de engenharia de um software, seja para a manutengio

ou a evolugdo de software, que serdoc discutidos a seguir.

Modificar um software é uma atividade trivial no dia a dia das organizagoes, seja ela para
corregiio de um “bug’” ou para atender a uma necessidade legal e essa simples atividade exige
muito cuidado. Infelizmente, toda vez que uma modificagio de software ¢ introduzida num
procedimento 16gico complexo, o potencial de erros tende a crescer. Na corregio de um erro,
muitas vezes o desenvolvedor ndo consegue prever as implicagdes dessa corre¢ac em outros
médulos do software, provocando efeitos colaterais na aplicac@o. Quanto mais manutengio o

software sofra maior serd a sua descaracterizagio frente ao projeto ori ginal.

A reengenharia € um recurso importante para se recuperar as informagc®es de projeto de um
software existente, que permita atender a evolugao do software legado, que possibilite as
organizaces atualizagdes tecnolégicas, envolvendo a implementagio de novos requisitos de
usuério para atender as suas necessidades, adequar os software as necessidades de regras de
negécio, bem como adequar 0s Seus sistemas para as novas tecnologias de hardware e do
software, que a cada instantes sao disponibilizados para 0 mercado. Esta é provavelmente a
forma mais rapida € menos onerosa do ponto de vista econdmico para ajudar as organizagdes

na evolugio dos scus sistemas de informacgéo.

5» Manutencio de software

“H4 30 anos a manutengiio de software foi caracterizada [7] como um “iceberg’. No inicio
dos anos 70, o “iceberg” de manutencao era suficientemente grande para afundar um “porta-

avides. Hoje, poderia afundar toda a Marinha® [20].

A manutengio de software existente pode ser responsdvel por mais de 60% de todo o esfor¢o
despendido por uma organizagio de desenvolvimento ¢ a porcentagem continua a Crescer a
medida que mais software € produzido [12]. Isso poderia levar a questionamentos, por que é
necessdria tanta manutencdo e por que € despendido tanto esfor¢o para a manutencgio de

sistemas. [20 1. Osborne € Chikofsky [19] ddo uma resposta sobre esse assunto:

27

“Grande parte do software do qual as organizagdes dependem atualmente, tem em média 15
anos. Mesmo quando esses programas foram criados as melhores técnicas de projeto e
codificacdo conhecidas na época, o tamanho do programa e de armazenamento eram
preocupagdes importantes. Depois migraram para novas plataformas ajustando para nova
tecnologia de hardware ¢ software ¢ foram melhoradas para methor atender as necessidades

do usudrio, isto tudo sem uma preocupagio com a arquitetura global.
O resultado foi estruturas mal projetadas, codificadas e documentadas e de l6gica pobre.”

A natureza onipresente da modificagio permeia todo o trabalho de construg@o de software.
Modificagbes sdo inevitdveis quando sistemas baseados em computador sdo construidos.
Conseqiientemente, ¢ necessario desenvolver mecanismos para avaliar, controlar ¢ realizar

modificagdes.

Manutengdo de software ¢, sem duvida, muito mais do que “concertar erros”. Pode-se definir
manutengiio descrevendo quatro atividades [25], que sdo desenvolvidas, depois de um
programa ser liberado para uso. Quais sejam: manutengio corretiva, manutengio adaptativa,
manutencio perfectiva ou de melhoria e manutengdo preventiva ou reengenharia. Para JAN
em “Software Engineering” considera apenas trés tipos de manutengio: A corretiva a
adaptativa, a perfectiva. Apenas cerca de 20% de todo o trabalho de manutencdo é gasto
“consertando erros”. Os restantes 80% sdo gastos adaptando sistemas existentes efetuando
modificagbes no seu ambiente externo, fazendo melhorias solicitadas por usudrios e
submetendo uma aplicagfio a reengenharia, para uso futuro. Quando a manutengiio abrange

toda essa atividades, ¢ realmente fécil ver porque absorve tanto esforgo[20 J.

3 Preservar os investimentos e usar novas tecnologias

Nos tiltimos anos, a frase — a Internet muda tudo — € uma das novas leis de TI. E é verdade,
mesmo depois das quedas dos chamados “ponto com” a Internet € um fator estratégico no

planejamento das gerencias de Tl

Mas, uma coisa ndo se modificou: a informagdo continua a ser um fator fundamental para o

crescimento de uma organizagio, as regras de negdcio nfio mudaram ou pouco mudaram.

Os novos desafios e possibilidades que nasciam com as tecnologias antes da Internet, e de

sistemas orientados a objetos, incluem em si um problema para muitas dreas de TI. Como

28

tornar possivel o uso das novas tecnologias, sem perder 08 investimentos feitos nos sistemas

legados. Este é o maior desafio dos profissionais de TL

Os sistemas, desenvolvidos aos longos dos anos de informatizacdio nas organizagbes, contam
com informagOes valorosas que rodam com estabilidade ¢ confiabilidade. Por outro lado,
estes sistemas encontram-se em arquiteturas fechadas ¢ inflexiveis jd explorados neste

trabalho.

Por volta de 85 % das aplicagGes, ainda mantém as suas informagdes sobre processos €
parceiros dentro de uma tecnologia obsoletas, principalmente escritas na linguagem COBOL
[27 1. Milhares de "homens-ano” de trabalho foram investidos em desenvolvimento &

manutengdo destas aplicagdes.

Certamente niio fazer nada, nio é a melhor opgio a ser tomada. Um bom exemplo que define
estes conflitos de objetivos € 0 setor financeiro, onde na economia global € o setor que mais
investe na tecnologia da informagéo. Um banco que nao oferece novos servicos como
"internet banking", estd fora da realidade tecnolégica. Por outro lado, o niicleo dos negdcios,
as regras de negdcios continuam a ser as mesmas, elas nio mudaram com a evolugéo da
Internet. Bancos ainda fazem aplicagdes, efetuam empréstimos, financiam a produgio ¢ estdo
dando créditos aos clientes, ¢ obviamente calculam as taxas de juros e controlam os seus
recebimentos. Fizeram isso antes da era de informatizaciio ¢ estardio fazendo assim por

muitos e muitos anos e ndo importa o quanto a tecnologia possa evoluir.

Assim, preservar 0s investimentos é sem divida muito importante para as organizacdes, © 4
forma que pode ajudar neste objetivo de preservar investimentos de décadas de
desenvolvimento de sistemas € a reengenharia de software para recriar sistemas legados para
adequar esses sistemas as novas tecnologias disponiveis ¢ agregar valores aos negdcios das

corporagdes.

2.6.2 Categorias de sistemas legados

Em uma organizacdo, as aplicagdes legados consistem de dados legados, da sua
funcionalidade (c6digo da regra de negécio, 2 16gica da aplicagio) e de interface de usudrio

APIs). A partir de uma perspectiva de reengenharia de uma aplicagao, as aplicacdes legadas

29

podem ser classificadas nas categorias descritas a seguir ¢ ilustradas nas figuras 3 4, 5 e 6

abaixo[47e[5].

» Aplicacdes altamente decompostas

> Aplicactes decompostas por dados

» Aplicacies decompostas por programas

> Aplicacdes monoliticas

2.6.2.1 Aplicacdes altamente decompostas

S#o aplicacbes bem estruturadas e bem construidas, apresentando as seguintes caracteristicas:
Primeiro, todos os componentes da aplicagdo sdo separadas em interfaces de usudrio (as
APIs), no cédigo da aplicagéo (regras de negdécio) e em servigos de acessos aos dados. Séo
aplicagBes jd construidas em trés camadas. As interfaces dos servigos de acesso aos dados
sio muito bem definido permitindo que os dados da aplicacdo possam Ser acessados
remotamente sem a necessidade de se chamar funcionalidades de aplicag@o. Segundo, 0s
médulos da aplicagdo sdo independentes entre si, sem a interdependéncia hierdrquica entre
os programas. Finalmente 0s médulos da aplicagdo tem de ser bem definidos, entre as
interfaces com os servigos aos bancos de dados, interfaces com usudrio e com oulras

aplicagdes.

S0 também consideradas aplicagbes altamente decompostas quando elas sdo desenvolvidas
usando técnicas de design estruturadas ou as técnicas de orientacio a objeto onde cada
objeto tem a sua proptia interface. Essas arquiteturas de aplicagOes sdo as mais amigdveis
para a transigdo € acesso externo e permitem que as aplicagoes legadas possam ser acessadas
diretamente e os seus componen{es possam Ser substituidos gradualmente, durante um
processo transigfo. Essa arquitetura de aplicagdes possuem alta capacidade de

manutenibilidade dos seus componentes [28 |.

A figura a seguir ilustra a categoria de programas de sistemas legados altamente

decompostas, em que 0s objetos estido separados dentro do programa.

30

Interface
Camada de Interface

do Usudrio

Processamento

Camada de Processamento s
Logico

DADOS

Camada de Dados

Figura 3 Categoria de Aplicagoes Legadas Altamente Decomposta

2.6.2.2 Aplicacies com dados decompostos

Sdo aplicagbes semi-decompostas por componentes de dados ¢ de interface de usudrio e
]égica em que os componentes estiio claramente em duas camadas cujas caracterfsticas sao

apresentadas a seguir::

Primeira caracteristica, 0s componentes da aplicagiio sdo separados em duas unidades:
Servigos de acesso aos dados e uma mistura de processamento de interface de usudrios e
processamento de l6gica da aplicagio, numa s6 unidade 16gica. Tém-se assim duas camadas
16gicas de aplicagdes onde 0s dados estdo em uma camada e a interface de usudrio e a logica

dos programas estdo em outra camada.

A segunda caracteristica, as interfaces para outras aplicagdes devem estar bem definidas.
Nesta categoria de aplicagdes 0s dados podem ser acessados diretamente, mas a logica nio.
Neste tipo de arquitetura 0s servigos de acesso aos dados podem ser reestruturados, bem
como acessados remotamente atraves de programas (a segunda camada) ou através de
ferramentas, em fungdo das interfaces de servicos de dados. ldealmente as interfaces dos
servigos de acessos aos dados podem ser projetados de tal forma, gue possa permitir a

substituigio de gerenciadores DBMS (Data Base Management System) por outro DBMS,

31

como por exemplo: trocar Informix por Oracle ou Adabas por DB2, sem que iss0 possa
impactar as aplicagdes. Infelizmente a légica das aplicagbes dessa categoria de aplicagdes
legada esté vinculadas com 0 processamento da interface do usudrio e deste modo ndo pode
ser chamada remotamente. Mas essas aplicagdes, mesmo assim ainda sdo amigaveis ¢ com
alguma semelhanga do ponto de vista de reengenharia da aplicagdo com as aplicacdes

altamente decompostas, definidas no item 2.2.1[28 1.

Interface do
Camada Interface do usudrio Usudrio
e de Processamento Processamento
Légico
Camada de Dados
DADOS

Figura 4 Categoria de Aplicagdes Legadas Decompostas pot Dados - Duas camadas

2.6.2.3 AplicacOes com programas decompostos

S#o aplicagbes semi-decompostas pot componentes de interface de usudrio e de légica ¢

acesso aos dados em que 0s componentes estio e em duas camadas e que sdo apresentadas a

seguir::

AplicacBes legadas com programas decomposios sa0 também semidecomposias
distinguindo-se das caracter{sticas apresentadas no item 2.6.2.2, nos seguintes pontos: Os
componentes da aplicagio estio separados em duas unidades, a unidade de processamento da
interface do uswdrio ¢ uma composi¢io da unidade de processamento da logica e

processamento do acesso a0 banco de dados da aplicagdo. As interfaces para outras

32

aplicacdes tal como apresentado no item anterior devem ser bem definidas. Estas duas
camadas 16gicas de aplicagdes onde a interface de usudrio é uma camada e logica de
programas € 08 Servigos de acessos aos dados s30 uma dnica camada. Nesta categoria de
aplicacbes os dados nao podem ser acessados diretamente, eles podem ser acessados somente
por fungdes pré-definidas. Muitas aplicagbes legadas existentes s¢ enquadram nessa
categoria. Nesses tipos de arquiteturas de aplicagdes 0s dados seqiienciais nfio podem ser
trabalhados pelo usudrio final e nem pelo administrador do data base, esta arquitetura de

aplicagdes sdo também do tipo amigavel [28 1.

Interface

Camada Interface Usuério -
do Usuario

Processamento
Camada Processamento
Légico
¢ de Dados
Dados

Figura 5 Categoria de Aplicacdes Legadas Decomposta por programa — Duas camadas

2.6.2.4 aplicagdes ndo estruturada ou monoliticas

Este tipo de aplicagéo legada tem as seguintes caracteristicas: Todos os componentes da
aplicagio sdo componentes insepardveis, ¢ tanto a interface do usudrio, da légica do
programa bem como 0s acessos aos dados sdo partes integrantes do mesmo componente
programa. Essas aplicagbes de uma tnica camada, sdo geralmente aplicagdes muito velbas e
sem estruturas. Em esséncia, os dados dessas aplicagbes podem somente S€r acessados
através das aplicagdes e através de terminais. Em geral, essas aplicacbes sio hostis para a re-

engenharia e sdo as mais dificeis em integrar ¢ permitir uma reengenharia do legado.

33

Muitas aplicagdes podem ter uma arquitetura a qual podera ter uma combinacgio desses
quatro tipos de arquiteturas de sistemas legados. Isto permite identificar as arquiteturas
existentes ¢ assim ser feito um planejamento para gradualmente sercm re-arquitetadas e
migradas para screm integradas com novas aplicaghes ou reescrever sé assim for mais

atraente.

Camada de Interface Interfaf:c? do
Usuaério
de Processamento Processamento
Légico
e de Dados
Dados

Figura 6 Categoria de Aplicagdes Legadas Monolitica - componentes em uma dnica camada

2.6.3 Fundamentos que propiciam a reengenharia de legados

A reengenharia de sistemas legados estd centrada em principios que norteiam os responsaveis
pela drea de TT para a tomada de decisfio, o que fazer com 0s seus legados, se elabora um
projeto para migrar os seus sistemas legados, se vai buscar no mercado solugdes prontas para
substitui esses sistemas legados ou s¢ redesenvolver partir do “zero” novos sistemas para
atender as necessidades da organizagao. Custo, tempo de execugio do projeto, a importincia
dos sistemas legados para a organizagao 3o fundamentais para a escolha da alternativa mais

apropriada. A seguir sao apresentados esses principios [28 |.

34

2.6.3.1 Valor de negicio da aplicaco legada.

Para justificar qualquer reengenharia, as aplicagdes legadas deverfio suportar 08 Processos
significantes atuais e futuros de um negécio. O valor de negéeio pode ser medido em termos
de contribui¢io para lucros em termos financeiros, e como um diferencial para os clientes,
tipos de processos apoiados, e valor de mercado. Se necessdrio, os valores de mercado
podem ser medidos numa pontuacio entre O ¢ 10 para indicar a importancia dessa aplicagao

legada para a corporagao.

2.6.3.2 Requisitos para desenvolvimento e flexibilidade

Se a aplicago ndo precisa ser modificada extensamente por questdes de flexibilidade e
crescimento, entio o minimo esforgo para integri-la com as novas aplicagbes pode ser
apropriada. Requisitos para flexibilidade ¢ crescimento podem ser medidos em termos de
atimeros methorias funcionais e de performance necessérias para os préximos cinco anos

(dois ou trés anos tipicamente).

2.6.4 Qualidade técnica de uma aplicaciio legada

Se as aplicagdes legadas néo sdo do tipo decompostas e se estdo escritas em linguagem
assembler utilizando com sistemas de arquivos convencionais e desatualizados do tipo
indexados, a sugestdo ¢ melhor reescrevé-la nos pontos criticos. Situagao técnica representa a
qualidade da aplicacdo legada em termos de sua modularidade, taxas de erro, flexibilidade e
utilizagdio das tecnologias atuais. Qualidade técnica pode ser medida em termos de padrdes
internacionais de qualidade como ISO 9126. Informalmente, a situacdo técnica pode
representar “hostilidade” da aplicagdo legada para reengenharia (aplicacoes monoliticas sdo
mais dificeis de serem trabalhadas do que as que sdo as aplicaces do tipo completamente

decompostas).

A Figura 7 mostra como esses trés fatores contribuem para um primeiro entendimento de
qual estratégia € a mais apropriada para reestruturar aplicagbes legadas. Em geral, as
aplicacdes que agregam pouco valor ao negécio ndo deveriam ser consideradas para sistemas
de reengenharia (essas sao representadas pelo plano AEFD na Figura 7). Se necessdria, a

operagio e manutencio dessas aplicagdes podemn ser terceirizadas. Em um outro eXuremo,

35

uma 6tima opgdo de tempo € empenho deve ser gasto nas aplicagbes que agregam altos
valores a0 negécio (o plano BCGH na Figura 7). As aplicag0es que t&m baixo valor técnico
(o plano ABCD na Figura 7) sao os mais diffceis de lidar e custam muito caro para qué a
reengenharia seja feita. Essas aplicagdes sdo, geralmente, muito velhas e monoliticas. No
outro extremo, as aplicagdes de alto valor técnico (o plano EFGH) séo relativamente féceis e
niio caras de fazer reengenharia e de se integrarem com aplicacdes novas. Aplicagoes legadas
nessa categoria sdo tipicamente bem estruturadas aplicacoes baseadas em RDBMS.
Finalmente, a dimensdo da flexibilidade também se encaixa nessa andlise. AplicacOes
legadas que ndo precisam se desenvolver dramaticamente (o plano AEHB) sao boas
candidatas para integracg2o Com novas aplicagbes enquanto as aplicagdes legadas com
requisitos de alta flexibilidade e desenvolvimento (o plano CDFG) deveriam ser

eventualmente reprojetadas e migradas.

O cubo exibido na Figura 7 é uma ferramenta efetiva para a andlise do “portifélio” da
aplicacio” para determinar a situagdo das aplicagBes atuais. Naturalmente, outros fatores
podem ser, ¢ deveriam ser, adicionados para anglise futuro. A Tabela 1 inclui fatores
adicionais como pressdes corporativas para reduzir os custos da aplicagdo, requisitos de
consulta a dados, requisitos para circulagao de dados, e requisitos de integragio para sugerir
caminhos na escolha da decisdo apropriada (outros fatores podem ser adicionados a essa
tabela). Essa tabela pode ser também usada como tabela de decisdo. Ela mosira que a
migragio gradual pode ser escolhida se os requisitos de desenvolvimenio ¢ crescimento sdo
altos e as pressdes corporativas para reduzir os costos dos dados ¢ da aplicagdo sdo altos
também. Assim também, data warehousing pode ser apropriado se 0S requisitos de consulta a
dados sdo muito altos e os requisitos de circulagio de dados sdo baixos (ex. dados de
planejamento); € 0 acesso NO local pode ser apropriado para oS dados os quais 0s requisitos

de consulta a dados sdo baixos mas 0s requisitos de precisdo dos dados sdo altos.

36

F G
Situagdo Técnica f Requisitos de
(Amigdvel para Flexibilidade
Reengenharia) E < H
C

Valor de Negéeio da Aplicagio Legada

Nota: As linhas escuras deveriam ser a drea principal de concentragio.
H = Ignore, B = Acesso no local, C = Migragao (gradual ou cold
turkey), G = Data warchousing

Figura 7 Esquema para Andlise de Estratégias

2.6.5 Identificar estratégia para reengenharia de sistemas legados

Um fator importante no desenvolvimento de estratégias de migragio de cddigos € manter o
sistema legado funcionando totalmente e sem restricbes, enquanto durar o projeto de
migracdo do sistema legado, ndo importando qual das estratégias tenha sido adotada. Alem
disso para alcangar estes requisitos, certas metas € objetivos sio inerentes para definir uma

estratégia de componentizagio de sistemas, incluindo-se os seguintes aspectos [22]:

% Minimizar os custos de desenvolvimento e organizacao

Componentes migrados para conviver com c6digos legados requer o desenvolvimento de
adaptadores, pontes, e outros cédigos de suporte que serdo descartados depois de terminado a
migracdo do sistema legado. Deve haver critério para o desenvolvimento desses cédigos de
suporte, pois representam uma despesa adicional, como este cédigo deve ser projetado,
desenvolvida, testada e¢ mantida durante o projeto de migragio. Minimizando o
desenvolvimento de cédigo de suporte ¢ um modo de minimizar os custos gerais de

desenvolvimento [22].

» Suporte a um agressivo e previsivel planejamento

A estratégia de componentizagio deve procurar minimizar o tempo requerido para

desenvolver e organizar os sistemas para serem reengenharia [22].

37

» Manter a qualidade do preduto

Existem duas discussdes sobre qualidade. Uma € a qualidade final. O sisterna deve ser facil
de manter ¢ implementar tecnologias que ainda ndo sdo obsoletas. A segunda ¢ a qualidade

em cada implementagdio de um componente [22].

» Minimizar riscos

Riscos podem ocorrer por diferentes maneiras, € sdo aceitos se ele é gerenciado ¢ brando.
Devido ao tamanho geral dos riscos ¢ dos investimentos requeridos, € importante mante-lo

baixo [22].

» Manter a complexidade em nivel gerencidvel

A estrutura cadtica e tamanha de muitos sistemas legados é o maior fator de complexidade.

Portanto, a estratégia deve minimizd-lo e manter o sistema em um nivel adequado [22].

2.6.6 Estratégia de reengenharia de sistemas legadas
Existem muitas maneiras diferentes de se fazer reengenharia de sistemas legados.

Serdo discutidas as mais importantes estratégias para um projeto de reengenharia de sistemas.
A necessidade de um projeto de migrar sistemas legados € necessdrio que um projeto seja
elaborado para definir as estratégias de reengenharia desses sistemas. As estratégias devem

lidar com as aplicagdes legadas dentro das seguintes categorias { 31,1 17 T.e[11]:

Identificar uma estratégia para a reengenharia de software de sistemas legados de
tecnologias orientadas a procedimentos (desatualizadas) para tecnologias orientadas a objeto,
com o objetivo de recuperar, especificar, redesenhar, reescrever e reimplantar um sistema
existente, do qual se conhece o cédigo legado e eventualmente alguma documentagdo, € de
fundamental importincia para o processo de MIGRAR legados da tecnologia orientado a

procedimentos para a tecnologia orientado a objetos.

No contexto de “software engineering” é muito importante diferenciar termos conceituais

como as disciplinas “reengenharia” e “engenharia reversa’, ndo apenas em quanto a

38

semantica, mas a sua esséncia na engenharia de software. E essc tema serd abordado do

ponto de vista conceitual a seguir.

2.6.6.1 Ignorar os sistemas legados

Descarti-las de todos os desenvolvimentos futuros. Por vezes os legados sfo trocados por
solucBes prontas do mercado e que levam anos e muito investimentos financeiros para serem

“customizadas” para serem implementadas na organizagéo.

Outra forma de ignorar legados € deixar os legados como estdo, neste caso esta estratégia
ignora complemente as necessidades da organizagio, nao ha muito que falar sobre essa
alternativa, que por se s6 mostra o desinteresse da tecnologia da informagfio pelos negécios da

organizacio, pois a tecnologia da informagio € essencial para as organizagoes.

Essa estratégia é praticamente invidvel na maioria das situaches porque muitas aplicagdes
legadas ndo podem ser ignoradas devido &s suas bases de dados serem inter-relacionadas e de
uso intenso por sistemas legados ou ndo. Em particular, os dados legados podem ser de
mesmos valores, mesmo quando as regras de negécio (a funcionalidade) estejam
desatualizadas. Por exemplo, muitas aplicagdes de telecomunicagbes novas necessitam ter
acesso ao site e aos dados mais acessados do consumidor através das aplicagbes de
telecomunicagdes legadas. Esse caminho é aconselhdvel quando as fungdes de negdcios
suportadas pela aplicaco legada nfio serdo utilizadas e estdo sendo retiradas, o status técnico
da aplicagiio € alto o suficiente para minimizar os custos com manutencdo, 0s requisitos para
desenvolvimento e flexibilidade sdo nulos, ¢ 0 que precisa para integracdo com outras

aplicagdes é muito pouco.

2.6.6.2 Reescrever

Esta estratégia poderd incorrer num problema que € muito comum nas organizagdes. Nem
sempre existe a documentagdo do sistema legado, ou se existe nio é confidvel e sendo assim
ndo pode dar uma base de sustentagéo para o redesenvolvimento de um sistema. Um outro
fator de risco para essa alternativa sdo as muitas regras do neg6cio embutidas no codigo e a

falta do conhecimento dessas regras pelo pessoal da tecnologia da informagao. Pessoas que

39

participaram ou desenvolveram esses sistemas estdo em outras fungdes ou nfio estio mais na

organizagio.

Essa titica também nio é vidvel em muitas situagGes préticas porque nao € fécil reescrever

sistemas de aplicagdes legadas a partir do “nada” devido aos seguintes fatores [28 }.

» Um sistema melhor deve ser prometido ao usudrio porque muito provavelmente o custo

beneficio ndo justifique grandes investimentos somente pela promessa de flexibilidade.

» As pressdes sobre os negéeios nio esperam para permitir novos desenvolvimentos (para

algumas aplicagdes legadas, de 5 a 10 requisi¢des de mudanca sio recebidas por més).

» As especificacBes para sistemas legados raramente existem além de muita dependéncia

sobre o sistema legado e que ndo estdo documentadas.

» Qs esforgos para reescrever uma aplicagiio legada podem ser muito grandes e exigem forte

gerenciamento.

» Reescrever grandes aplicagdes legadas exige muito tempo (muitas das novas tecnologias

se tornam legadas de trés a cinco anos).

Como descrito, essa tdtica deve ser considerada por aquelas aplicacdes com grande
expectativa de vida, ¢ com alta demanda para flexibilidade, redugfo de custos, e integragao
com outras aplicacdes. Terceirizar a tarefa para reescrever uma aplicagio legada € uma opgéo
vidvel para muitas organizagdes. Em particular, a terceirizacdo para fibricas de softwares
pode ser vantajosa do ponto de vista custos. Dedene e DeVreese [10] relatam dois casos de

estudo que exibem as vantagens da reengenharia por terceiros.

2.6.6.3 Integrar

Consolid4-las nas aplicagfes atuais e futuras adequadamente. Essa alternativa ¢ um misto do
novo com o velho, Significa integrar as novas tecnologias com as tecnologias velhas, o que €
possivel. Decidir por essa alternativa impde a organizacfio a se “perpetuar”, aunca ou quase
isso, a sair de tecnologias velhas, pois a interagio de sistemas novos com base de dados de
tecnologias velhas sdo constantes e normais. A nio ser que essas bases de dados sejam

duplicadas para serem usadas pelos sistemas em novas tecnologias. Al pode incorrer em

40

duplicidade de informacdo, de inconsisténcias de dados. E necessdrio uma profunda

avaliac@o para aplicar essa alternativa.

Esta estratégia deve ser usada nas seguintes situagdes. (ver tabela 1): O acesso aos dados

necessarios € urgente ¢ ndo podem ser adiados até o término da migragéo.

» Valor agregado dos dados e dos c6digos da aplicagdo sdo altos.

» Uso dos dados enquanto uma migra¢do completa deve ser feita,

» Necessidade de acesso a dados por aplicagfes cliente e ferramentas de usudrio final
» Queries envolvendo poucas consultas aos dados

> Exige alto volume de movimentacdo de dados sdo altos, usudrios necessitam acessar a

c6pia mais recente dos dados, ndo um data warechouse cu banco de dados desatualizados.

2.6.6.4 Data warehouse

Construir um sistema como “prote¢io” para hospedar os dados freqilentemente acessados.
Nio deve ser considerado como uma estratégia para a reengenharia de sistemas legados ¢ nem
para implementar novas tecnologias nas organizagGes, pois o objetivo maior numa
reengenharia de sistemas é a implementagio de melhorias no c¢ddigo, (j4 discutidas
anteriormente), e transformd-lo num aplicativo orientado a objetos, e essa alternativa chega
apenas aos dados mais freqiientemente utilizados. Duplicar a base de dados mais utilizados e

desenvolver qualquer aplicativo sobre e¢ssa base, ¢ oficializar a inconsisténcias de dados na

organizaco.

Essa alternativa deve ser usada quando a organizagio entender o data warehouse como um
modelo poderoso de banco de dados que aumenta significamente a capacidade dos

administradores de analisar rapidamente conjunto de dados extensos e multidimensionais.

O conceito de Data warehouse € baseado na notagdio que dados organizacionais existem em

dois formatos:

> Dados operacionais os quais sdo usados para o processamento das transa¢des do dia-a-dia.

Esses dados sdo atualizados freqiientemente.

41

» Dados de andlise (suporte de decisdo) os quais sfo usados para andlise de negécio e
geragdo de relatorios. Esses dados sdo extraidos dos dados operacionais periodicamente e

recebidos, geralmente, por outro computador para geragio de relatério e andlise.

2.6.6.5 Migracao Gradual

I

Reprojetar, redesenvolver ¢ fazer a transicdo gradualmente. Essa é a alternativa mais
adequada quando se trata de migrar sistemas legados numa organizagfo. Esta alternativa
permite de fato a implementagio de novas tecnologias numa organiza¢do, em todos os
aspectos, podendo envolver tecnologias de bancos de dados, implementar sistemas orientados
a objeto e abrir porta para sistemas WEB de forma nativo. E sem ddvida a alternativa mais
atraente, pois além das tecnologias que possam ser implementadas, poder-se melhorar os

sistemas existentes.

As estratégias de migragdo graduais de aplicacdes legadas sio geralmente mais eficientes que
reescrever a partir do inicio (cold turkey). A estratégia de migragfo gradual envolve muitos
passos durante o periodo de muitos anos e usa “tecnologia de ponta™ para fazer a transi¢io da

aplicagdo legada sem que o cliente e o usudrio final percebam.

Os sistemas legado e migrado “target” precisam coexistir durante o estdgio de migracio. O
desafio principal € criar uma abertura para isolar as etapas de migragdo, para poupar o
usudrio final e para que ele ndo perceba se a informacio requisitada estd sendo recuperada de
um moédulo/banco de dados antigo ou de um mddulo/banco de dados novo. Durante a

migracdo, deve prover uma abertura para [4]:
» Acesso a fun¢bes da aplicagio legada ou dados de interfaces do usudrio alvo;
» Acesso a fungbes da aplicagio alvo ou dados das interfaces legadas do usudrio;

» Esconder através de encapsulamento, detalhes do legado e dos sistemas alvo, dos usudrios

[81];
» Sincronizagio dos dados alvo (target) e legados;

Desenvolvimento de software (gateway) para facilitar o processo de migragiio € por vezes

caro. O custo total, o tempo do projeto, o pessoal envolvido e as consideragdes

42

organizacionais necessdrias para a migragao precisam ser consideradas cuidadosamente, pois

pode inviabiliza o projeto de migragdo[28].

Fatores de Avaliaciio
Ignorar o

Sistema Legado

Valor de negécio de uma aplicagfio Baixa (curta
legada extensdo/ndo
critica)

Requisitos para flexibilidade eNyla para Muitoaltae

a 1vi . .
esenvolvimento muito b aixa

Situagio técnica da aplicagio legada Alta

{(decomponivel)

Pressiio corporativa para reduzir custos Baixa

e sistermnas cliente/servidor

Requisitos para consulta a dados Baixa

(direto ao assunto)

Requisitos para circulagiic de dados

Integracio necessdria com oulrasBaixa para muito

aplicagdes servidora baixa

Nimero de aplicages locais acessadas

por clientes para os dados necessarios

Reescrever

do zero

Alta
fextensdo
muito

longa)

imediata

Muito baixa

Altae

imediata

Média

Alta para

muito alta

Integrar

Data

Migracio

(Acesse N0 Warehousing Gradual

Local)

Alta

Baixa

Baixa para

média

Baixa

Baixa

Alta

Baixa

Pouca

Alta

Média

Meédia

Média

Alta para muito

alta

Baixa

Baixa

Larga

Alta

Alta

Meédia para

baixa

Alta e longa

extensdo

Média

Média

Alta para
muito

alta

TABELA 1 DIRECOES (GERAIS PARA LIDAR COM UM SISTEMA LEGADO [28 |

43

CAPITULO 3 MODELO PARA REENGENHRAIA DE SISTEMAS LEGADOS

Identificar um modelo de reengenharia de software para migrar sistemas legados de
tecnologias orientadas a procedimentos “OBSOLETAS” para tecnologias orientadas a objeto
com o objetivo de recuperar, especificar, redesenhar e reimplantar um sistema existente, do
qual se conhece o c6digo legado e eventualmente alguma documentacio, ¢ fundamental para

o processo de reengenharia de software.

Também, uma motivagio para a aplicagfio da reengenharia de sistemas legados € a diminuigio
dos altos custos de manutencio de sistemas que se devem a diversos fatores [29]. A
manuteng#o contfnua faz com que a implementagfio torne-se inconsistente com o projeto
original, o cédigo torne-se dificil de se entender e sujeito a muitos erros. Além da
documentacfo desatualizada. As linguagens de programaco em que esses sistemas legados
foram implementados estdo ultrapassadas, ndo havendo suporte por parte dos seus fabricantes
e o ensino destas linguagens pelas universidades nfio tem a mesma importincia que as
linguagens orientadas a objetos possuem, contribuindo dessa forma, para a escassez de

profissionais que as dominem.

Assim, a reengenharia torna-se uma drea interessante para ser explorada dentro do campo da
engenharia de software, que objetiva melhorar a produtividade e qualidade dos processos de
“modernizaciio’’ de software. Para cumprir tal objetivo a reengenharia de software precisa
entender corretamente os programas existentes, a partir dos cédigos fontes e documentagéo
disponiveis, para facilitar a realizagio de mudancas e reconstrug¢fo do software numa nova
tecnologia. Portanto, o propdsito da reengenharia de software ¢ facilitar a execugio de
mudancas ¢ corregdes, a recuperacio do desenho em um nivel mais alto de abstragdo, o

redesenho e a reprogramagiio de um software.

S#o apresentados as metodologias, os processos e etapas que possibilitam as organizagdes a
elaborarem um projeto para migrar os seus sistemas legados orientados a procedimentos para
tecnologias de sistemas orientados a objeto, de forma segura, pois uma estratégia mal
conduzida, pode causar “estragos” na drea de tecnologia da informagfio niio apenas do ponto

de vista custo financeiro de migragfio, mas também desacreditar junto a drea de TI estas

44

tecnologias, bem como a capacidade técnica das pessoas envolvidas em um projeto dessa

natureza.

Sdo apresentadas também alternativas para as estratégias para a migragio desses sistemas
legados nas corporagbes através de alternativas discutidas nesse capitulo. Essas alternativas
pressupdem a utilizagio da reengenharia, como forma de atualizar sistemas legados, sem ter

que redesenvolver esse sistemas ou substitui-los por “pacotes™.

Como resultado desse trabalho serdo apresentadas modelos para um projeto de reengenharia
de sistemas legados, tais como: requisitos, planejamento, arquitetura, reorganizacdo do
c6digo, reescrever o cédigo, testes, validacio e implantagio dos sistema legado em

produgio.

3.1 ETAPAS PARA A REENGENHARIA DE SISTEMAS LEGADOS

O sucesso do projeto estd condicionado a uma série de atividades - as etapas para a
reengenharia de sistemas legados - as quais devem ser identificadas e elaboradas de forma
organizada em projeto para migrar os sistemas legados de uma na corporagdo. Essas
atividades sio fundamentais e ocorrem em todas as fases do projeto. Nos capitulos a seguir
sdo elencados essas atividades que ndo podem ser desconsideradas, quando do aceite do
projeto junto aos executivos da corporagiio e que foi & base dos estudos para a reengenharia

de legados, e que serdio tratados nos tema a seguir [28 |:

A figura 8 apresentada a seguir, resume o processo de reengenharia de sistemas legados,
onde as etapas sdo identificadas e discutidas: A etapa Andlise de requisitos permite que no
processo de reengenharia sejam efetuadas entre outras, mudangas na estrutura de dados, ou
na API, etc. Na etapa Planejamentos sdo discutidos os sistemas candidatos, prioridades,
tempo e recursos a serem utilizados. Na etapa Arquitetura sdo definidas as tecnologias a
serem empregada bem como a arquitetura para a qual os sistemas serdo feitos a reengenharia.
Na etapa Reorganizagio do codigo é a etapa em que serdo tratadas as reorganizacdes do
c6édigo para permitir a sua reengenharia. A fase Conversdo do c6digo € a etapa em que o
cédigo serd convertido para as tecnologias adotadas e devem ser feitas de modo
automatizado. N etapa de testes, os sistemas migrados dever ser testados exaustivamente para
a sua homologacio ¢ implantac@io. Na etapa de implantagio, deve ser discutido treinamento,

e implantagdo da aplicagdo migrada para a tecnologia adotada.

45

Planejamento
Implantacio
Analises ¢ Requisitos
Testes
Conversio Arquitetura
do cédigo

Reorganizaciio do Codigo
Projeto fisico

Figura 8 Modelo do processo de reengenharia de sistemas

3.2 PLANEJAMENTO PARA REENGENHARIA DE SISTEMAS LEGADOS

Uma etapa importante no processo de reengenharia de sistemas legados é o planejamento das
atividades a serem executadas, sendo que um dos objetivos é fornecer um esbogo de forma a
permitir estimativas dos recursos a serem utilizados, bem como dos custos e de um
cronograma para as atividades de reengenharia. Essa estimativas deverdo ser feitas dentro de
uma perspectiva determinada de tempo e devem naturalmente ser atualizadas na medida em o
projeto avance. Também deverd ser estimado o cendrio para delimitar os melhores ¢ piores
casos para o comportamento do projeto. Outro objetivo do planejamento é sincronizar a

reengenharia de um sistema legado, com o0s objetivos de negdeios da corporagao.

A seguir sdo apresentadas as atividades associadas ao planejamento de um projeto para a

reengenharia de sistemas legados ¢ que envolvem: [28 1.

46

» Sistema legado como motivagiio do negécio e a expectativa da reengenharia
Reengenharia de sistemas legado € um processo caro ¢ arriscado. A finalidade dessa

atividade, é um esfor¢o para entender ¢ analisar as bases e motiva¢do dos negécios e em que
os sistemas legados agregam valores aos negécios da corporagdo, antes de comegar o

processo de reengenharia. Essa andlise deve considerar os seguintes aspectos:
¢ Deve-se estabelecer as expectativas da reengenharia no negécio da corporagao;
¢ Analisar as oportunidades de negécios;

¢ Alinhar a Tecnologia da Informago com os negdcios da corporagio .

» Avaliar a arquitetura para o sistema legado

Avaliar uma arquitetura para atender as necessidades da corporagiio, especialmente para
atender as estratégias dos negécios desta, elencando-se as aplicagdes candidatas para o

processo de reengenharia, considerando os seguintes aspectos:

e Buscar uma arquitetura mais apropriada, que atenda as necessidades da aplicagfo ¢

¢ leve em consideracéo custos, manutenibilidade e disponibilidade;

* Escolher uma estratégia mais apropriada para a reengenharia da aplicagdo;

» Avaliar e planejar a infra-estrutura da arquitetura

Avaliar e planejar a mais apropriada infra-estrutura da arquitetura (plataforma) para
determinar as tecnologias necessdrias para desenvolver o projeto de reengenharia de sistemas

legados e deve-se considerar as seguintes atividades:.
e Avaliar as necessidades de infra-estrutura de Tecnologia da Informagéo

e Escolher a mais apropriada infra-estrutura de Tecnologia da Informacio.

47

» Analisar o custo beneficio

A principal finalidade da andlise do custo beneficio & comparar os beneficios esperados com:
a estimativa de tempo, os recursos financeiros despendidos, o hardware e software envolvidos
¢ recursos humanos necessérios para a execugdo de um projeto de reengenharia de software

legado. Os seguintes tGpicos sao essenciais nessa atividade:
e Estimar o esforco necessdrio para o desenvolvimento e suporte do projeto;
¢ Um esbogo dos custos envolvidos previstos e imprevistos e 0s beneficios que se busca;

e (Calcular s 0s custos sdo atraentes, ao menos, equivalem aos beneficios esperados.

» Determinar custos e migracio de aplica¢io.

Determinar s¢ o custo / beneficio da migragdo é favordvel para uma aplicacéo ser candidata a
reengenharia. Isto envolve verificar no mercado se hd solugdes prontas que atenda a troca do
legado por “pacotes” e 0s custo sejam atraentes, ou s¢ 0 tempo € O custo para redesenvolver
justificam o investimento para o desenvolvimento de um novo sistema, em substituigiio ao
legado. Pode ser avaliado também, e nessa tese é que séo encontrados os grandes beneficios
da reengenharia: Apesar do cédigo ser “velho” a tecnologia possa estar ultrapassada, mas a
regra do negécio continua firme e atendendo plenamente aos requisitos funcionais da

aplicacdo e do negécio.

» Avaliar impacto da arquitetura na organizacio envolvendo - HW e SW

Identificar o ambiente de execucdo na qual a aplicacfio migrada serd migrada. Descrever o
impacto, e diferencas entre este ambiente “alvo” e o ambiente de execugio da aplicagdo

original, relativos a arquitetura, Hardware e software.

% Criar um ambiente de desenvolvimento de reengenharia.

48

Criar o ambiente de desenvolvimento e disponibilizar ferramentas necessdrias para fazer a
reengenharia da aplicacio legada.Este ambiente deve contemplar o hardware e software
envolvido bem como um ambiente de simulagdio, para permitir a comparagio dos resultados

obtidos dos sistemas legados com os resultados obtidos na nova tecnologia.
3 Identificar necessidades de um projeto de reengenharia piloto

Devido ao grande nimero de fatores no ambiente legado ¢ o ndmero de usudrios que sdo
potencialmente afetados, implementagdes piloto em pequena escala podem ser recomendadas
para dar ajuda nos esforgos de migragdo. Esta atividade deve conter a extenséo para a qual as
consideracdes de migragdo sugerem que as solucBes piloto sdo necessérias para validar a
integridade do sistema, performance e aceitagdio dos psudrios. Embora tenha os seus valores
em um teste de solucdo técnica, pilotos também servem como um mecanismo para prover
informes das entradas dos usudrios e para alcangar a confianga do usudrio. Depois de
determinado o escopo do piloto é necessdrio estabelecer o grau de envolvimento do usuario,

validagdes em verificacdes.

» Treinamento na tecnologia alvo

Um treinamento adequado é um passo muito importante para melhorar a produtividade ¢ a
qualidade do trabalho de uma equipe. Em Informdtica, isso vale tanto para o domfnio de

técnicas ja consagradas como para a atualizag@o constantc em novas tecnologias e produtos.

Um projeto que envolva migrar sistemas legados, néo contempla apenas o cédigo legado, as
regras de negdcio, mas também as tecnologias obsoletas empregadas nesse projeto. Migrar
esse legado envolve também profissionais da Tecnologia da Informagéo e envolve usudrios.
Elaborar um projeto dessa natureza exige um adequado treinamento para as tecnologias alvo
“target” para os profissionais envolvidos, a fim de que o projeto possa tluir com naturalidade
e sem tropecos € possa ser implementado com sucesso na organizagio, pois um projeto dessa
magnitude envolve custos vultosos e sinergia de toda uma equipe de projeto e perspectiva de
solugio dos problemas existentes. A falta de um treinamento poderd frustrar e os prejuizos

sdo muito grandes.

E provével que muitos profissionais experientes na drea de desenvolvimento de sistemas néo
se adaptem ao estilo exigido pelo paradigma de orientagdo a objetos, como alvo de

tecnologia “target” num processo de migrar sistemas legados.

49

Como as empresas tendem a usar 0s seus melhores profissionais nesse tipo de desafio
tecnolégico, corre-se o risco de que, por falta de condigGes de adaptacdo, €sses profissionais
se utilizem “velhos hdbitos” de desenvolvimento de sistemas, subtilizando os beneficios da
orientacdo a objetos e levando as organizagdes a conclusdes errdneas sobre a validade desta
tecnologia. Para minimizar esse impacto, é imprescindivel o uso de uma metodologia ¢ um

eficiente processo de reeducagio € treinamento [18 1.

Tomando a reeducaciio e treinamento como fatores bésicos para iniciar qualquer processo de
mudanga dentro de uma organizagdo, uma primeira questdo geral que se deve analisar estd
associada aos fatores que facilitariam ou dificultariam 0 processo de aprendizagem de¢ um
novo modelo de desenvolvimento e ou manutengdo de sistemas. As mudangas aceleradas na
4rea de informdtica fazem com que as organizagdes, as empresas de desenvolvimento de
sistemas mantenham em suas equipes profissionais com formagiio e experiéncia cada vez
mais heterogéneos, configurando um conjunto de profissionais com pertis diferenciados com

reflexo direto no processo de aprendizagem de novos modelos e técnicas.

O impacto que a tecnologia orientacdo a objetos causa nos profissionais mais expericntes na
4drea de tecnologia da informacdo, estd relacionado 3 resisténcia desses profissionais,
formadas ao longo dos anos no paradigma da tecnologia de desenvolvimento € manutencdo
de software estruturado e orientados a procedimentos, €m abandond-lo para adotar 0 novo
paradigma, uma vez que, este ainda tem se mostrado satisfatério para solucionar a maior
parte dos seus problemas de manutengio ¢ desenvolvimento de sistemas [31]. Esta
resisténcia de certa forma pode estar associada a dificuldade em assimilar e aplicar de forma
correta os conceitos de Q0. Para isso, é necessario que as pessoas sejam capazes de pensar
em termos de objetos, suas acdes € as colaboragdes entre esses objetos. Experiéncias
perccbidas nas organizagdes demonstram que usualmente as pessoas utilizam metodologias ¢
linguagens de programacao orientados a objetos, mas continuam trabalhando da mesma
forma estruturada, definindo e mantendo softwares em (ermos de procedimentos, funcdes e

estruturas de dados [1]1,121e[311]

> Controle sobre o legado

Em toda organizagio espera-se que a drea de TI tenha o minimo de controle sobre o seu
legado, envolvendo aplicativos e dados. Sabe-se que desde as grandes organizagdes até as

pequenas, esse controle pode até ser rigoroso, mas como a idade dos sistemas legado variam

50

de sistemas recém implantados a até mais de 20 anos de existéncia, esse controle pode nio

representar a verdadeira situagio desses legados.

Sabe-se que hd um misto de falta de cédigos fontes e de até vérias versdes de cddigo fonie de
um mesmo programa. A precisdo de informagao sobre os sistemas legados que permitam
delinear o perfil mais realista da empresa & necessdrio para claboragdo do projeto, pois os
custos, tempo para migragéio sdo determinados a partir dessa informagdes. Se a organizagao
nio dispuser dessas informagdes, sera necessério prové-las antes do inicio do projeto para
que seja possivel efetuar o planejamento € quantificar os recursos humanos, financeiros €

usudrio envolvidos.

» Envolver a alta administragiio da empresa

A reengenharia de sistemas legados deve ser encarada como um projeto da organizaggo, ndo
como um projeto pessoal e tio pouco s6 da TI Assim sendo, tendo-se essa consciéncia os
responsaveis pela Tecnologia da Informagio deverio envolver toda a organizago,
assumindo junto a alta administragdo, bem como dos seus pares todo o 6nus do projeto. Os
recursos financeiros, 0s recursos humanos, Os prazos para a execucdo do projeto, a
priorizagiio das 4reas que deverdo ter os seus sistemas legados migrados deverdo ser objeto
de negociagio e compromissos firmes. Os recursos financeiros deverdo fluir com
naturalidade, para que nfio haja interrup¢des no decorrer do projeto e o sucesso seja o

objetivo final.

3 Construir um processo de confianca junto ao usuario

Os usudrios deverdo ser envolvidos de forma amigdvel, para que seja possivel estabelecer um
regime de confianca ¢ ter o usudrio como um aliado no projeto, pois sem o apoio deste, o
projeto tende a demorar muito e ter 0s seus prazos € custos comprometidos. A partir desse
compromisso de confianga estabelecido, muitos dos problemas que estavam “hibernando” ,
como fungdes do sistema legado que nao estavam funcionando, podem ser corrigidos durante
o processo de reengenharia de sistemas e requisitos dos usudrios, que cairam o

esquecimento podem ser recuperados e atendidos.

51

3.3 ANALISES E REQUISITOS DE REENGENHARIA DE SOFTWARE
A escolha de um padro para extrair o conhecimento dos cédigos fontes legados,

principalmente os de terceira geracfio, como, por exemplo, o0 COBOL, constitui-se de um
método de engenharia reversa que, visa facilitar o processo de reengenharia de sistemas, para
a recuperaco de informagdes tteis ao entendimento do software. Através desse método é
possivel a recuperagdo de visdes funcionais e de visdes estruturais do sistema. As
consideracdes lgicas sdo obtidas por meio da andlise da interface para a recuperagio de
visdes funcionais do sistema e, posteriormente, parte-se dessas visdes recuperadas e de
consideragbes fisicas obtidas por meio da andlise do cédigo fonte, para a recuperagdo de
visdes estruturais do sistema. A maijor dificuldade a ser encontrada nesse processo, nas
linguagens do tipo procedurais, é o uso indiscriminado de comandos de “desvio”, como por
exemplo o comando “GO TO....”, comandos de encapsulamentos de desvios “ALTRER” que
altera dinamicamente uma légica de programa, REDEFINICOES de estruturas de dados, na
linguagem Cobol. Todos esses desvios devem ser tratados e retirados do cédigo, pois

programas orientados a objeto, em JAVA ndo suportam esses procedimentos.

A seguir sdio apresentados os principais requisitos que devem estar aderentes ao processo de

reengenharia de sistemas legados.

3.3.1 Conservar a familiaridade entre os sistemas e usuirios

A familiaridade operacional da navegabilidade e, da usabilidade devem ser sempre
preservadas e, quando isso ndo for possivel, deverd ser documentada para se for o caso
retreinar o usudrio nas fungdes de usos do sistema novo, guando da sua homologagdo. Quando
isso acontecer, as mudangas deverdio ser formalmente negociadas entre as pessoas da drea de

Tecnologia da Informacgdo e os representantes do usudrio final, que deveri dar o seu aceite.

52

3.3.2 Remodularizar o cédigo legado com funcionalidades em duplicata.

Remodularizar o c6digo da aplicagio legada para separar e retirar as funcionalidades

duplicadas dos cédigos das funcionalidades da aplicacéo.

3.3.3 Requerimentos funcionais

E muito importante também que no processo de reengenharia de sistemas legados, os

seguintes requerimentos funcionais sejam fixados [28 |:

>

>

Tempo de resposta;

Seguranca dos dados;

Restringir a disponibilizagdo de dados;

Possibilitar a conectividade com outros ambientes (sites);
Interoperabilidade e interfaces com outros sistemas;

Portabilidade de plataformas de Hardware/ Software (processamento, apresentagio e

dados);
Total controle de manuseio de cdpias de seguranca e recuperagio de dados;
Manutenibilidade do sistema;

Uso ilimitado de acessos aos Bancos de dados por qualquer nimero de usudrios

autorizados:

Politicas de restri¢des (Padrdes e politicas a ser seguido, controles de aplicagdes, auditar

restrigdes)

34 ARQUITETURA - AMBIENTE PARA REENGENHARIA DE SISTEMAS LEGADOS

Criar um ambiente operacional para a reengenharia de sistemas legados com as caracteristicas

-

da arquitetura em que o sistema ird operar, é a atividade que antecede a reengenharia

33

propriamente dita. Nesta etapa, todo o ambiente deverd estar disponibilizado para as etapas
seguintes, que sdo a reengenharia, 0s testes, a validacao do projeto e a implantagdo do sistema

legado na nova tecnologia.

Qutras atividades de preparag@o para o ambiente, deverdo ser objeto de trabalhos reparatérios
para a reengenharia dos sistemas, dentre elas uma revisio de atividades executadas desde o

inicio do projeto.

Sfo apresentadas a seguir as etapas para a montagem do ambiente operacional onde a
reengenharia de sistemas serd executada, para migrar sistemas legados para tecnologias

orientados a objeto.

3.4.1 Montagem do ambiente operacional

Esta atividade tem por objetivo a criagdo da infra-estrutura necessdria para as atividades de

reengenharia de sistemas, ¢ deve contemplar:

% Instalacdo de Hardware ;

> InstalagBes de Software;

» Customizagio de Hardware e de Software definidos no inicio do projeto;
» Criar infra-estrutura operacional para a equipe de reengenharia;

» Integrar esse novo ambiente ao ambiente existente;

»> (Caso seja necessdrio treinar a equipe de reengenharia.

3.4.2 Analise de inventario

Deverd ser elaborado um inventdrio dos sistemas legados, contemplando: uma descricéio
detalhada, contendo o tamanho, idade dos sistemas, ¢ a criticalidade para cada aplicativo que
for para a reengenharia. Essas informac¢Ses devem ser ordenadas de acordo com a
criticalidade para o negdcio da organizaciio, a longevidade e manutenibilidade do sistema para

a organizagio.

54

3.4.3 Reestruturaciio da documentacio dos sistemas

A grande maioria dos sistemas legados t8m pouca documentagio. Na medida do possivel
procurar recuperar a documentagiio quando nfio houver e procurar documentar todos os

sistemas, se houver recursos e tempo para essa finalidade.

3.4.4 Revisido do projeto de reengenharia de sistemas

Uma revisio do projeto de reengenharia de sistemas proporciona uma comparagao do projeto
em andamento com o que foi projetado, ¢ se houver desvios, deverdo entdo ser corrigidos.

As revisoes dos principais itens sdio apresentados a seguir [14],[15]:

» Metas e objetivos da organizacio com relacdo aos sistemas legados,

» Prioridades dos sistemas e necessidades dos usudrios;

» Recursos financeiros disponiveis;

> Requisitos ndo funcionais (desempenho, seguranga, interoperabilidade);

> regulamentos, politicas e padrdes relevantes, e regras/doutrinas de negdcio.

3.4.5 Administrar esforco de migracfio — migrar, manter e controlar retrabalhos

Administrar o esforco de migracio é um fator critico de sucesso. E importante determinar
como melhorias em processos nos sistemas legados serfo administradas enquanto o sistema

alvo estd em processo de reengenharia.

A abordagem da administragio da migracdo deve considerar como:

% Controlar as manutengdes, enquanto o sistema estd em processo de reengenharia;
% Controlar retrabalhos de reengenharia;

¥ Acompanhar progresso ¢ pontos de controle;

55

» Identificar ¢ monitorar questdes em aberto;

% Identificar e reduzir riscos;

% Estabelecer comunicagdo entre desenvolvedores de sistemas, pontos de contato para
sistemas legados, organizagdes responsdveis por sistemas com interface, clientes ¢ grupos

de usudrios.

Os sistemas legados e migrado “alvo” precisam coexistir durante o estdgio de migragdo. O
desafio principal é criar uma abertura para isolar as ctapas de migracfio, para poupar o
usudrio final de dupla atividade ¢ confusbes operacionais, e para que ele nio perceba se a
informagio requisitada estd sendo recuperada de um médulo/banco de dados antigo ou de um

médulo/banco de dados novo. Durante a migragio, deve-se prover uma abertura para [4]:
» Acesso a funcdes da aplicaciio legada ou a dados de interfaces do usudrio alvo;
» Acesso a fungdes da aplicagio alvo ou a dados das interfaces legadas do usudrio;

> Esconder através de encapsulamento, detathes do legado e dos sistemas alvo, dos usudrios

[8)
» Sincronizagdo dos dados alvo (target) e legados;

O desenvolvimento de softwares tradutores (gateway) para facilitar o processo de migragio €
por vezes caro. O custo total, o tempo do projeto, 0 pessoal envolvido e as consideragdes
organizacional necessdrias para a migrago, precisam ser consideradas cuidadosamente, pois

podem inviabiliza o projeto de migragio[28].

3.4.6 Criar protétipos

Protétipos podem, efetivamente, testar solugdes em potencial, especialmente em casos onde
os sistemas corrente sdo complexos e envolvem muitos usudrios. O plano de migragao deve
identificar a necessidade de prototipagio. Ao mesmo tempo, deve enderecar a extensao da
necessidade da migracio para reduzir o risco de migragio ¢ de demonstrar a adeguacio de

conceitos.

56

Esta atividade deve também enderecar o escopo da necessidade de prototipagdo, os conceitos
de migragdo que estdo sendo testados, o conjunto de resultados esperados, e mecanismos para

avaliar se os resultados esperados foram obtidos.

Os protétipos devem ser significativos, e precisam ser mais que programas de demonstracdo
para relagSes pudblicas ou de marketing. Soluges de protétipos podem ser avaliados através
de uma variedade de significados, incluindo avaliagio de prova de conceitos, avaliagio de

usudrios, e avaliagdo de arquitetura.

A interface de usudrio é particularmente apropriada para prototipacdo. Por exemplo, um
protétipo "story-board" prové uma tela simples que imita o que o usudrio deveria perceber
no sistema. O protétipo pode ser finalizado em semanas em vez de meses de especificagéio
trabalhosa. Um protétipo efetivo pode também permitir que usudrios fagam uso do cendrio
operacional da nova interface, antes das decisdes de implementagio de software e hardware

serem consolidadas.

3.5 REORGANIZAR O CODIGO LEGADO - PROJETO FISICO

Na pritica, a tentativa de conversdo direta de programas codificados em uma linguagem para
outra (translation), resulta na preservagdo de todos os problemas da linguagem original e
adiciona novas complicagbes causadas pela linguagem diferente. Pode-se dizer que superar

esta diferenca € a parte mais dificil da reengenharia.

A extracio automadtica de objetos de um programa Cobol corresponde a responder a questao
de como o programa poderia ser escrito usando linguagens mais modernas ¢ ferramentas
adequadas. A transi¢do para a tecnologia OO ¢ dividida por ferramentas em duas fases. A
primeira fase trata da reestruturagdo do programa fonte, tipico em ferramentas de
reengenharia. Apds a reestruturagio, o programa estruturado se torna transparente € mais
ficil de manter (até 44 % C. Babcock). A proxima etapa é a transformag¢do do programa
reestruturado em um programa orientado a objeto. A abordagem O6bvia € a divisdio do

programa em classes, dificil de formalizar e automatizar.

57

3.5.1 Reestruturacio do cédigo - primeira fase

Naturalmente, diferengas entre as linguagens original e final complicam a reestruturac@o,
sendo proposto a uma reestrutura¢do em fases, a ser aplicada em programas escritos na

linguagem COBOL.

Programa na Reestruturagio Programa na

Linguagem original Linguagem original

Figura 9 Reestruturacdo de codigo

Em caso especifico para linguagem COBOL, a reestruturacdo a ser feita por ferramentas

envolve os seguintes componentes:

> Preparar o cédigo Cobol para a criagio de Métodos e Sub Métodos

A linguagem COBOL no dispde de “Método” ou “Sub-método”. O unico meio de
estruturagdo de um programa na linguagem Cobol € via “Pardgrafos” ou “Section” dentro da
Procedure Division. E necessério, consegiientemente transformar os pardgrafos de programas
escritos em Cobol em Sub-Métodos e as Sections do programa Cobol em Métodos para

possibilitar o processo de conversio para linguagens do tipo Orientadas a Objetos™.

» Tratamento de Operadores

Localizagdo ou eliminagdic de GOTO ¢ ALTER. Na época da criagio do Cobol os desvios
incondicionais eram perfeitamente aceitdveis, muito embora esses comandos dificultassem o
entendimento de um programa Cobol. Algumas linguagens, como JAVA por exemplo,

eliminaram completamente esses operadores GOTO e ALTER. Na reengenharia deve-se

58

converter GOTOs para outros operadores estruturados, com seméntica equivalente, e buscar

uma solugdo para resolver o problema do ALTER.

» Tratamento de redefinicio de estruturas

Localizagio ou eliminagdo de REDEFINES. Esta facilidade para a linguagem COBOL ¢
muito utilizada em estruturas de arquivos convencionais, ndo sendo suportados em
tecnologias OO ¢ nem tampouco em estruturas de Bancos de Dados Relacionais. Deve-se

normalizar as estruturas de arquivos que utilizam essas facilidades.

» Tratamento de Arrays

Localizagéio e tratamento de ARRAYS. Esta facilidade para a linguagem COBOL ¢é muito
utilizada em estruturas de arquivos convencionais ¢ em dreas de trabalho e devem ser
organizadas para ser suportada na nova estrutura de linguagens em tecnologias OO. Deve-se

normalizar as estruturas destes ARRAYS para serem melhores utilizadas.
» SORT interno

A alternativa para tratar o SORT interno, para os casos de pouco volumes de dados a serem
classificados devera ter o seu tratamento feito em meméria. Para grandes volumes deverd ser

externalizado em arquivos externos em disco.

» Chamadas a sub-rotinas externas

Deverio ser transformadas em objetos a serem utilizados pelos programas que passarem pelo

processo de reengenharia de software.

» Localizaciio de Dados

Uma das grandes diferengas entre Cobol e linguagens como o JAVA € que todos os campos
de dados sfo globais. Para fazer com que o programa transformado esteja conforme com a

ideologia da linguagem destino, hd necessidade de localizar os dados. Uma passagem € usada

59

para distribuir, otimizadamente, as varidveis entre as procedures e organizar a transmissio de

varidveis para os locais necessdrios como parimetros.

3.5.2 Otimizacio das transformacoes

Sistemas legados podem ter sofrido manutencdes durante décadas, que transformaram de tal
forma o projeto original que a estrutura atual nem de longe se parece com a original, As
otimizacBes das transformagdes focalizam aquelas que facilitam as manutengdes futuras,

principalmente, varidveis e codigos ndo utilizados.

3.5.3 Codigo legado Reorganizado

A seguir sdo apresentados cddigos Cobol, reorganizado de tal forma que possa ser utilizado
como entrada para ferramentas que reescreva o novo ¢odigo na linguagem destino, a partir do

cédigo organizado.

60

A seguir é apresentado de forma Procedimental um modelo que, a partir de um programa

COBOL, do tipo monolitico (uma camada) possa ser migrado para o modelo em trés camadas.

Modelo para a extragéo de codigo legado Cobol

|ID DIVISION. i
| PROGRAM~1D, FBNHZ01C.]
| AUTHOR. JAPI. |
| *REMARKS, |
| ENVIRONMENT DIVISIQON. |
|CONFIGURATION SECTION. |
| SPECIAL-NAMES,

i DECIMAL-POINT IS COMMA I
| C0l1 IS CANAL-1.

| INPUT-OUTPUT SECTION. |
|FILE-CONTRCL. I
I SELECT ENTDATAS ASSIGN UT-S—ENTDATAS. |
| SELECT ENTCADAS ASSIGN UT-S5—ENTCADAS. |
| SELECT SAILISTA ASSIGN UT-S—SAILISTA. |
|DATA DIVISTON. |
JFILE SECTION. |
|FD ENTDATAS BLOCK O RECORDING F

] LABEL RECQORDS STANDARD. |

B +
| IDENTIFICAGAD DE AREAS I/0 |
e +

FD ENTCADAS | CadastroMutuarios entcadas;

CadastroMutuarios.Record entcadas_Record;
CadastroMutuarios.Record regCadEn;
DatasIndiceBNH entdatas;

01 REG-CAD-EN
FD ENTDATAS

i
|
I
|
!
|
| I
| |
| | DatasIndiceBNH.Record entdatas_Record;
| @1 CREINDLI-EN | DatasIndiceBNRH,Record 0! creindlEn;
| 01 CREINDZ2-EN | DatasIndiceBNH.Record_02 creind2En;
| FD SAILISTA { JapiReportFile sailista;
| o D Dot +
| f IDENTIFICAC@O DE INTERFACES DE USUARIO |
| o e B e e L L +
| |
| 01 CABEC . |
b 02 FILLER PIC X(112) VALUE |
t ' FBNEH2010 *** C REDITO |
i ' TMOBILIARTID |
|- '#** L I STAGEM oo |
|- ' CADASTRDO
| 02 FILLER PIC X{3) VALUE 'FL.' |
| 02 FOLHA-CAB PIC ZZ.29% |
| 02 FILLER PIC X4{4) VALUE SPACES |
| 02 DATA-CAB FIC X{8)
| | stringBuffer cabec = new StringBuffer(
[! " FBNH2010 *** CREDITO IMOB
| { "R I O *¥** 1L, T S TAGEM Do CADA
| | "STRGO FL."
| | "ZZ.Z2%8"
| 1 " n
| | "R XEEAKKK"
| | Vi
I | finael Japi.Mask FOLHA_CABR = new
| Japi.Mask ("ZZ.238");
final int $FOLHA_CAB = 115;
final int DATA CAB = 8;
final int SDATA_CAB = 125;
01 DJDE PIC X(40) VBLUE

StringBuffer djde new StringBuffer(
"1DJDE JDL=DFAULT, JDE=F1635,END; "

|

I

!

i

{ *1DJDE JDL=DFAYULT, JDE=F1633,END;"'
I

!

|)i
i

01 LIN-TOTEAIX

+ o4+ o+

61

02 FILLER PIC X(10) VALUE ' FIRMA *?7
02 FIR-L PIC 29
02 FILLER PIC X (14) VALUE '* FAIXA !

StringBuffer 1linTotfaix = new StringBuffer(
" F I RMA £ n
"agn + // pos=10

Modelc para a extragfio de cédigo legado Cobol

|
|
|
02 FAIXA-LIN PIC 99992.9995 |
|
|
|

I y FAIXA i
! 199399, 9389
| Vi
| final int FIR_L = 2;
| final int $FIR_L = 10;
| final Japi.Mask FAIXA_LIN = pew Japl.Mask{"99389.9958");
| £inal int SFAIXA_LIN = 26;
0l TCTAIS. |
02 NOMES-DO3~TOTAIS BIC X {32}
02 VALORES PIC B(20)---.=—=.===.-==_-=9,99
| StringBuffer totais = new StringBuffer(
| MRERKAKEK KKK LK KX KKK KKK XXX XXX XXBERBBERBBBBBEBBEBB "
| "BRB--=,--—,---,—-——.--5,0%"
I Vi
| fipal int WOMES_DOS_TOTALS = 32;
| final int S$NOMES_DOS_TOTAIS = 0;
| final Japi.Mask VALORES = new Japli.Mask
| {"BBRBERBBBEBEBBBBBBBB-~~.--—~,---.——-,--8, 83"} ;
| final int SVALORES = 32;
+- e ———— +
! IDENTIFICAC@O DE AREAS SIMPLES DE WORK !
+— - ——— -+
77 AC-REG PIC $(6) VALUE ZERGS. |
int acReqg = 0;
|
77 FOLHAS PIC 9(5) VALUE ZERQS COMP-3, |
! int folhas = 0;
I
7?7 TOTAPAR~GER PIC 9{7) VALUE ZEROS COMP-3.
| int totaparGer = O;
o +
| IDENTIFICAGAC DE AREAS COMPLEXAS DE WORK |
- +
02 DATA-INVE . |
03 DIA PIC 28 [}
03 MES PIC 9% |
03 ANC PIC 39 |
| 8tringBuffer datalnve = new S3tringBuffer(" ")
| final int DIA_OF_DATBE_INVE = 2;
| fimal int SDIA_OF_PATA_INVE = 0;
I final int MES_OF_DATA_INVE = 2;
! final int $MES_OF_DATA_INVE = 2}
| final int ANC_CF_DATA_INVE = 2;
| final int $SANC_OF_DATA_INVE = 4;
e ——— e +
| IDENTIFICAGCAC DE ARRAYS DE UMA DIMENSAC |
- e +

0l ACUMULADOQRES . |
0z FILLER PIC 8(15)v%9 VALUE ZEROS COMP-3
02 ACTXSEGUR PIC S(i5)V99 VALUE 7ERDS COMP-3
02 ACTXCOBRA PIC 9(153)VvS9 VALUF ZEROS COMP-3 |
02 ACJUREMPR PIC 9(15)v%9 VALUE ZEROS COMP-3
02 ACAMOREM PIC 859(13)V99 VALUE ZEROS COMP-3|

01 ACUM-R REDEFINES ACUMULADCRES |
Q2 ACUM-TARB PIC 9(15)V9% COMP~3 OCCURS 5 t

| BigDecimal actxsegur = BigDecimal.valueOf (0L, 2);
| BigDecimal actxcobra = BigDecimal.valueOf (0L, 2);
| BigDecimal acjurempr = BigDecimal.valueQf{0L, 2);
| BigDecimal acamorem = BigDecimal.wvalueQf{0L, 2};
| BigDecimal [] acumTab = {

| actxscgur,

| actxcobra,

| acjurempr,

| acamorem,

I bi

01 NOMES-TODOS-TOTAIS |

02 FILLER PIC X (32} VALUE |
' TOTAL DE CONTRATOS EM VIGOR ! |

02 FILLER PIC X(32) VALUE |
' TOTAL DE CONTRATOS PARALISADOS! 1

02 FILLER PIC X{32) VALUE |
' TOT. GERAL DA PRESTACAC b

+

62

01 TQTAIS-1-R REDEFINES NOMES-TODOS-TOTAILS |

02 TOT-TAB PIC X{32) OCCURS 3 TIMES |
| string[] totTab = {
| null,
| " TOTAL DE CONTRATOS EM VIGOR ",
| " TOTAL DE CONTRATOS PARALISADOS",
| " TOT. GERAL LA PRESTACAC Ll

Modelo para a extragio de cédigo legado Cobol

PROCEDURE DIVISION |
|Method: null public int fbnh2010_main() throws Exception {

Define FINALIZAR | boolean finalizar = false;

Define CARREGA-TOT-FAIXR boolean carregaTotFaixa = false;

Define QUEBRA boolear quebra = false;

Define ADICIONAR hoolean adicionar = false;

Define LISTAR boolean listar = false;

OPEN INPUT ENTCADAS ENTDATAS OUTPUT SAILISTA
entcadas = new CadastroMutuarios();
entcadas.openlnput{);
entdatas = new DatasIndiceBNH{);
entdatas.openlnput ();
sailista = new JapiReportFile();
sailista.openQutput {*C:/FBNE/REPORT/fbnh2010.rpt", 63);
WRITE RELATO FROM DJDE [W/40C] AFTER CANAL-1
sailista.nextPage();
sailista.write{djde);
entdatas Record = entdatas.read{);
if (entdatas_Record != null) {
if (entdatas_Record instanceof DatasIndiceBNH.Record_01)

creindlEn {DatasIndiceBNH,Record 01) entdatas_Record;
else if {entdatas_Record instanceof DatasIndiceBNH.Record 02)
creindZEn = (DatasIndiceBNWH.Record_02)entdatas_ Record;

}

else {

READ ENTDATAS AT

|
|
|
l
|
|
|
|
|
|
|
|
|
|
|
1
1
|
|
I
I
END
DISPLAY 'TERMINO DE DATAS INDEVIDO'
| Japi.display("TERMINO DE DATAS INDEVIDO") ;
WRITE RELATC FROM DJDE[W/40C] AFTER CANAL-1 |
| sallista.nextPagel{);
| sailista.write(djde};
CLOSE ENTCADAS ENTDATAS SAILISTA
| entcadas.closel();
| entdatas.close();
| sailista.close{);
STOFP RUN | return re;
|1
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
l
|
|
|
1
|
1
|
|
|
|
|
1

MOVE DATMVDMA-EN TO WRK-DT-EDIT
Japi.overlay{wrkDtEdit.length(}), +
creindlEn.datmvdma, 0, wrkDtEdit, 0};
MOVE WRK-DT-DM TO WRK-CAB-DM
Japi.overlay {WRK_CAB_DM, wrkDtEdit, SWRK_DT_DM, +
wrkDtCab, SWRK_CAB_DM);

MOVE WRE-DT-AA TG WRRK-CAB-AA
Japi.overlay {WRK_CAB_AA, wrkDLEdit, SWRK_DT_AA, +
wrkDt.Cab, S$WRK_CAB_AA);

MOVE WRK-DT-CAB TO DATA-CAB
Japi.overlay (DATA CAB, wrkDtCab, 0, cabec, SDATA_CAB);
leCad: while {true} {

entcadas Record = entcadas.read{};

LE-CAD: While{true)
READ ENTCADAS AT

if (entcadas Record != null)
regCadBn = entcadas_Record;
END else |

finalizar - true;

break leCad;

}

cbOni01++;

if (cbonoul == 1) {
firmaw regCadBrn. firma;
faixaWw = regCadEn.faixa;
carregaTotFaixa = true;

}

Set&Break FINALIZAR

ADD 1 TO CB-ON-001
IF CB~ON-001 = 1
MOVE FIRMA-CAD-EN TQ FIRMA-W
MOVE FAIXA-CAD-EN TC FAIXA-W
| Set CARREGA-TOT-FAIXA

ELSE else {
IF FIRMA-CAD-FN != FIRMA-W it (regCadEn.firma !'= firmawW)
Set QUEBRA quebra = true;

1
japiTestalndf: while {(true) f
if (lquebra && !carregaTotFaixa) |

JAPI-TESTA-INDF: While (true)
Test !QUEBRA & !CARREGA-TOT-FAIXA

PERFORM TESTA-INDF
Comment : VER-QUEBRA-FALXA
IF FAIXA-CAD-EN = FAIXA-W
ADD 1 TO FOLHAS

MOVE FOLHAS TO FOLHA-CAB

WRITE RELATO FROM CABEC AFTER CANAL-1 |

63

testalndf () ;

// VER QUEBRA FAIXA

if (regCadin.faixa != faixaW} (
folhast++;

Japi.overlay (FOLHA_CAB.length, +
Japi.edit (folhas, FOLHA CAB), 0, cabec,
sailista.nextPage();

SFOLHA_CAB) ;

Modelo para a extragio de cdigo legado Cobol

WRITE RELATO FROM LINHA-TOT-CODFA AFTER

MOVE FIRMA-W IO FIR-L
MOVE FAIXA-W TO FAIXA-LIN

WRITE RELATO FROM LIN-TOTFAIX AFTER 2

ApD 1 TO INDF
PERFORM DAR-TOTAL-FAIXA UNTIL INDE
GREATER 12

MOVE ZEROS TO INDF
MOVE ACUM-THSEG TO ACTXSEG-L

MOVE ZEROS TO ACUM-TXSEG
ACUM~TXCOB
ACUM-JUREMP
ACUM-AMOEMP

Reset FINALIZAR

PERFORM QUEBRA

S0MA-INDF2B: While{true)
ADD 1 TO INDF2
IF INDFZ2 GREATER 12
MOVE 11 TO IND

|
|
[
\
|
|
|
|
I
|
|
|
1
[
i
I
|
|
|
!
|
|
|
|
i
i
|
|
|
|
I
I
PERFORM LISTA-TOT UNTIL IND GREATER 16 |
i
MOVE AC-REG] TO VALORES-1 |
!
WRITE RELATO FROM TOTAIS-1 AFTER 2
|
CLOSE ENTDATAS ENTCRDAS SAILISTA
|
|
I

STOP RUN

sailista.write{cabec};
sallista.skiplLines{2);
satliista.write(linhaTotCodfa)};
Japi.overlay (FIR_L, firmaW, O, linTetfalx,
Japi.overlay (FAIXA_LIN.length, +
Japi.edit(faixaw, FATXA_LIN), 0,1linTotfaix, SFAIXA_LIN}:
sailista.skiplines(2);

gatlista.write (linTotfaix);

indf++;

SFIR_L);

while (indf <= 12}
darTotalFaixa();

indf = 0;

Japi.overlay (ACTXSEG_L.length, +

Japi.edit (acumTxseq, ACTXSEG_L}, O, linhaFaixa, $ACTXSEG_L};

acumTxseg = BigDecimal.valueOf (0L, 2};
acumTxcob = BigDecimal.valueQf (0L, 2);

acumJuremp = BigDecimal.valueOf (0L, 2};
acumAmoemp = BigDecimal.valueOf (0L, Z2};
}
}
finalizar = false;
quebra () ;
semalndfZb: while {(true) f{
indf2++;
if (indf2 > 12)
ind = 11;

while {ind <= 18)

listaTot (};
Japi.overlay{VALORES_l.length,+
Japi.edit (acReg, VALCRES 1), O, totaisl,
sailista.skipLines (2);
sailista.write{totaisl);
entdatas.close{);

entcadas.close();

sailista.closel);

return rc;

SVALORES_1};

64

3.6 Conversdo — reengenharia de sistemas — migrar o codigo legado

A engenharia reversa [9] surge como opgéo para a recuperagdo de um modelo em nivel de
abstrac@o mais alto que a do cédigo fonte. Se além desse modelo houver interesse na mudanga

da linguagem de programaco, um processo de reengenharia deve ser aplicado.

Sistema orientado a objetos mesmo nfo sendo ainda de amplo dominio da comunidade de TI
€ bem aceito como sendo uma das solugdes para os problemas de manutengio e reuso de
sistemas, através da utilizacfo de seus conceitos [30]. Sendo assim, os sistemas legados
poderiam ser redesenvolvidos ou sofrerem processo de reengenharia orientada a objetos. A
primeira opcéo deve ser descartada devido ao alto custo e também ao longo tempo necessario

para que a nova aplicac@o atinja o mesmo desempenho do antigo sistema [6] .

A reengenharia orientada a objetos entdc deve ser utilizada para a migrar os cédigos legados
em projetos de migragio. Como a primeira etapa de um processo de reengenharia é a
engenharia reversa, uma abordagem de engenharia reversa orientada a objetos torna-se

extremamente necessaria.

A seguir € apresentado de forma grifica o modelo que a partir de um programa Cobol, do tipo

monolitico (uma camada) possa ser migrado para o modelo em trés camadas.

Figura 10 Conversio de Sistemas Legados

65

3.6.1 Etapas para migrar cédigos legados procedimental para cédigo orientado a

objeto

O resultado da fase 3.5.1 - primeira fase, ¢ um programa estruturado, arquivado ainda em
COBOL em forma de modelo I6gico, que servird de entrada para converter o cédigo de
COBOL para a linguagem JAVA nas etapas seguintes. Os procedimentos sdo os apresentados

em todas as atividades no decorrer do item 3.5.

A seguir sdo descritas as etapas e experiéncias em ordem cronolégica do processo para

transformar cédigos legados em COBOL em linguagem JAVA em trés camadas.

» Transformar o cédigo procedimental em uma tnica classe - primeiro esforgo

A principal atividade nesse processo é transformar o cédigo procedimental COBOL em um
c6digo intermedidrio, que servird de entrada nas etapas seguintes para a geragio do c6digo
final na tecnologia JAVA. Assumiu-se que era possivel dividir, automaticamente, os
componentes de um programa estruturado em classes, sem intervengdo humana, através de
ferramentas que identificam e geram esse cédigo intermedidrio (isso j4 possivel com
ferramentas desenvolvidas por empresas especializadas em re-engenharia de sistemas) . O

algoritmo usado foi baseado na montagem ¢ simulagio de um modelo para essa finalidade.

» Extraciio do conhecimento - separar as classes do cédigo em 3 camadas

A experiéncia anterior disponibilizou wm c6digo, j4 numa linguagem intermedidria
considerando os critérios de decomposi¢iio do cédigo original em COBOL em uma classe
monolitica. A etapa seguinte serd a separagdo das classes em trés classcs: camada de
apresentagdo, de dados e de neg6cios. Foram identificadas heuristicas: acoplamento de dados,
chamadas/invocagiio de programa, ¢ de varidveis. Todas apresentam inconvenientes:
acoplamento relativo ao fluxo de controle ¢ inferior ao acoplamento de dados; varidveis poder
ser organizadas em estruturas que podem ser consideradas classe (ou simples depGsitos
tempordrios). Para obter programas estruturados com organizagio conforme orientacio a
objetos, necessdrias andlises mais profundas das varidveis e sua utilizagdo. Concluiu-se que
nem sempre a transparéncia do programa fica melhor - os resultados devem ser criticamente

avaliados e ajustados.

66

» Aplicabilidade de ferramentas para reengenharia de sistemas

Migrar sistemas legados em grandes corporagOes através de um processo de reengenharia de
sistemas sem o auxilio de uma ferramenta que possa interpretar o codigo legado ¢ efetuar a
reengenharia, talvez ndo fosse impossivel, mas certamente, por processo manual, levaria
muito tempo € o custo seria proibitivo para essa atividade, sem contar os erros que poderiam
advir desse processo. Portanto os estudos académicos, objeto de estudo para essa dissertago

limitam-se tdo somente as técnicas que devem ser utilizadas para a reengenharia de sistemas

legados.

O que se propde, além das técnicas ja conhecidas para a reengenharia de sistemas legados, €
a utilizagdo de ferramentas que possam automatizar esse processo de entendimento do cédigo
de um legado e fazer, ndo apenas a reengenharia desse legado, mas também fazer a
engenharia reversa, pois legados conhecidos quase ndo t&ém documentacio das suas regras de

negdeios, ¢ isso poderia ser um bom motivo também para recuperar essa documentagdo.

» Metodologia para geracio de cédigo OO

Uma ferramenta (Se construida para essa finalidade) permite visualizar a representacio
interna de um programa, que consiste na andlise dos c6digos fontes originais e a geragio de
um cidigo Q0. Os seguintes produtos serdo gerados, a partir dos cédigos fontes de telas ¢
programas, os quais serfio convertidos para os elementos correspondentes, descritos nos itens

seguintes.

3.6.2 Produtos gerados

Os produtos gerados tém por base a arquitetura IBM a partir de uma engenharia reversa do
codigo de interface para a reengenharia dos sistemas legados. Os seguintes produtos serdo

gerados pelo modelo de migracdo apresentado:

» Geracgao do objeto apresentaciio a partir de Relatorio, de mapa ou telas BMS/ MFS

67

Etapa em que todas as APIs, tanto dos Relatérios ou dos mapas do BMS do CICS como os

mapas MFS do IMS/DC , serdo transformados em objetos JAVA da seguinte forma:

Relatdrios, tal como no processo Batch sera formatado, para serem gerados ¢

possibilitar a sna impresséio em papel;
Uma pdgina JSP contendo a parte de apresentacio, para a interface com o usudrio.

Um objeto JavaBean que interagird com a pagina JSP para controlar o fluxo de
dados. O papel deste objeto serd o mesmo que o CICS o IMS/DC e 0 COMS t&m
com relacdo as telas, ou seja, serd responsidvel pelo tratamento dos dados de
entrada e de safda que constam da péagina JSP e o controle dos botdes que

correspondem as PF’s em um terminal sem inteligéncia.

Um objeto Servlet que interagird com o programa ou com o seu objeto
correspondente convertido e a pigina ISP, assim como o encadeamento dessas

paginas JSP entre si.

» Geracdo do Objeto programa

Os produtos gerados tém também por base a arquitetura IBM, a partir de uma engenharia

reversa do cddigo para a reengenharia dos sistemas legados. Os seguintes produtos serfio

gerados pelo modelo de migracio apresentado:

* Um objeto EJB, do tipo “Stateless Session Bean”, que conterd a l6gica principal;

¢ Objetos que podem ser exportados ou acoplados a ferramentas geradoras ou de

engenharia de software, tais como WSAD da IBM ou Rational Rose;

* Os cédigos gerados herdam todos os comentdrios do cédigo original;

¢ Cddigo gerado otimizado para tirar proveito da tecnologia QQ;

» Enfase na geragio de c6digo tendo como preocupacio i performance.

» Geracio do Objeto acesso aos dados

68

Os produtos gerados tém por base a arquitetura IBM ou UNISYS, a partir de uma engenharia

reversa dos acessos 3s bases de dados para a reengenharia dos sistemas legados. Os seguintes

produtos serfio gerados pelo modelo de migragdo apresentado:

3.6.3

Um ou mais objetos para cada arquivo seqiiencial utilizado.

Um ou mais objetos EJB, do tipo “Bean Managed Persistence Entity Bean™ para cada
tabela DB2 acessada. Em alguns casos, por motivo de performance, o objeto ndo serd
um EJB, isto &, serd um objeto normal, o qual encapsulard a tabela DB2 de modo

similar definido num Entity Bean.

Se o programa acessar um arquivo VSAM KSDS ou RRDS, este serd convertido em
uma tabela DB2, ¢ a mesma serd acessada por um objeto criado da mesma forma que

um arquivo seqilencial, porém, via JDBC.

No caso de relatérios na modalidade de processamento nao On-line (batch), ou seja, as
SYSOUTS, serdio utilizado, a principio, um objeto genérico, visto que os relatérios s&o
simples demais para possuirem um objeto exclusivo. No futuro, porém, serd estudada
a possibilidade de se gerar classes mais elaboradas para tratar a impressdo desses

relatérios, assim como 0 encaminhamento para o seu destino.

Com relagfio aos relatérios na modalidade on-line, conhecidas também como tele-
impressiio, terd que ser estudada uma maneira de contemplé-los. Quando se encontrar
uma forma de imprimir ¢ encaminhar os relatérios ndo On-line (Batch) mencionado

anteriormente, este também serd o meio utilizado nos casos de tele-impressdo.

Analisar o cédigo legado

Identificar cédigo no sistema legado, que invoca funcionalidades duplicadas e determinar

como modificar esse cédigo para usar novos servigos, bem como avaliar a performance do

cédigo gerado. O cédigo gerado deverd ter no minimo a performance equivalente do sistema

legado. O usudrio ndo poder4 ser penalizado quanto a esse ponto.

69

3.7 TESTES DA APLICACAQ MIGRADA

Demonstrar que a aplicagdo migrada atinge os objetivos da migracio quando roda no
ambiente alvo com os novos servigos, sem diferencas quanto ao conteddo dos dados tratados,
APIs, Relatérios e Data Bases, atendendo plenamente aos requisitos inicias da aplicacio

legada.

3.7.1 Testes Individuais

Demonstrar individualmente que os programas migrados, AGORA classes, atingem 0s seus
objetivos quando rodam no ambiente alvo com os novos servigos, sem diferencas quanto ao

contetido de dados tratados, apresentagdes e relatérios.

3.7.2 Testes Integrados

Demonstrar que o conjunto de classes migrado atinge os seus objetivos gquando rodam no
ambiente alvo com 0s novos servigos, sem diferencas quanto ao seu contetido de dados

tratados, apresentacdes e relatdrios, integrando-se a todo ambiente de testes.

Testes dos sistemas Testes do Sistema
legados original < P

Migrado em 3 camadas

Figura 11 Testes nos dois ambientes e comparacio de resultados

3.7.3 Validar e Homologar o sistema migrado - comparando resultados

Num projeto que envolva um grande nimero de programas, ¢ que envolva mudangas
tecnolégicas, principalmente as que afetam o usudrio, dever-se-d ter um rigido controle sobre
a fase de testes do projeto. Para o usudrio final, o sistema migrado deve se comportar como se

nada estivesse acontecendo, a ndo ser pelo “layout” das telas dos sistemas On-line, que

70

provavelmente estard mudando em fungdo do sistema que estard operando com interface
grifica na interagio com o usudrio assim como em alguns casos pela engenharia do produto
que estard operando com orientagdo a objetos. COMPARAR todas as saidas - Data Bases,
APIs, relatdrios contra os sistemas ORIGINAIS em COBOL que serviram de parimetros
para os testes, utilizando dados iguais aos utilizados pelo sistema migrado. Todos os arquivos
convencionais envolvidos, os bancos de dados dos sistemas, e as “telas” (API) devem ser
EXATAMENTE IGUAS em ambos os sistemas para que o usudrio possa “homologar” a

migracdo do sistema legado.

3.8 IMPLANTAR EM PRODUCAO O SISTEMA LEGADO

Implantar em produgfio a nova aplicaciio, j4 em tecnologia OO. Esta etapa encerra todos 0s
processos de um projeto de reengenharia, de um sistema legado numa corporacdo. Esta etapa
requer um acompanhamento sistemdtico do pessoal envolvido nos processos, da drea de TI,
para solucionar eventuais problemas, ji que depois de uma aplicacdo implantada é dificil
retornar 2 aplicagdo legada, pois muitas atividades ocorreram, principalmente alteragBes nas
bases de dados. Requer também o envolvimento sistemdtico dos usudrios das aplicagdes

transformadas, para de imediato comunicar os problemas que eventualmente possam OCorrer.

71

CAPITULO 4 CONSIDERACOES FINAIS

Durante as trés primeiras décadas da era do computador, o principal desafio era desenvolver
um hardware que reduzisse o custo de processamento e armazenagem de dados. Ao longo da
década de 1980, avangos na microeletrbnica resultaram em mator poder de computagiic a um
custo cada vez mais baixo. Hoje o problema € diferente. O principal desafio durante a década
de 1990 foi melhorar a qualidade e reduzir o custo de solugdes baseadas em computador.
Solugdes que sf@o implementadas com software. O poder de um computador central
{mainframe) da década de 1980 agora estd a disposi¢do sobre uma escrivaninha. As
assombrosas capacidades de processamento e armazenagem do modemo hardware
representam um grande potencial de computagdo. O software € 0 mecanismo gue nos

possibilita aproveitar e dar vaziio a esse potencial.

4.1 CONCLUSOES

O objetivo inicial desse trabalho foi elaborar uma proposta que possibilitasse que as
corporagdes pudessem efetuar reengenharia de seus sistemas legados a partir de linguagens do
tipo procedimental, escritos em COBOL, para sistemas orientados a objetos, € apresentados

em trés camadas.

Verificou-se entio que com as estratégias e procedimentos apresentados ao longo desse
trabalho que € possivel efetvar a reengenharia de sistemas legados, utilizando-se dos modelos

apresentados neste trabalho.

No inicio desse trabalho, avaliou-se em implementar nas estratégias ¢ procedimentos, um
modelo que contemplasse além da reengenharia, um mecanismo que durante o processo fosse
possivel implementar NOVOS CODIGOS de forma automética, em todos as classes que
fossem afetadas por essa necessidade, para atender a novos requisitos dos usudrios que
eventualmente pudessem estar represadas, € que de certa forma seria de relevante interesse

para processos de reengenharia de sistemas legados.

72

Concluindo, entre tantos beneficios a reengenharia de software vem contribuir para a
diminuigio dos custos em desenvolvimento de sistemas, melhorar a qualidade dos produtos
disponibilizados aos usudrios, reduzir tempo de desenvolvimento de sistemas e a tecnologia

orienta¢do a objetos € a responsdvel e quem viabiliza essas mudangas, e para melhor.

O objetivo inicial de elaborar uma “Proposta de uma estratégia de reengenharia de sistemas

legados para sistema ortentado a objeto” foi atingido.

4.2 COMENTARIOS GERAIS

A dificuldade de conciliar as atividades profissionais em fun¢io de uma estrutura
empresarial, com atividades de especializagiio motivou atrasos constantes. Espera-se que uma
nova estrutura empresarial que estd sendo implementada, possa no futuro ndo mais ser

motivos de atrasos em projetos académicos,

4.3 TRABALHOS FUTUROS

A especificidade de reengenharia de sistemas legados, o que o mercado estd buscando para
melhorar os seus sistemas legados, com a implementagdo de um modelo AUTOMATIZADO
que auxilie as organizagGes a implementar novos cédigos durante um processo de

reengenharia de sistemas legados, podera ser objeto de trabalhos futuros.

4.4 CONTRIBUICAO

Este trabalho trouxe contribuigdes que podem ajudar a reengenharia de sistemas legados
uma atividade mais segura e principalmente isentar os processos de erros humanos,

apresentado um padrio de reengenharia de legados.

73

REFERENCIAS BIBLIOGRAFICAS UTILIZADAS

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[81]

[9]

Beck, Kent; Cunningham, Ward. A Laboratory for Teaching Object Oriented Thinking,
OOPSLA 89 Proceedings

Becker, Karin; Zanella, Ana L.; Collaborative Design Course to Teach Object Oriented
Oriented Thinking, PUCRS, ASOQ98, 1998
http://www.inf.pucrs.br/~kbecker/ppubl.html

Bennet K, Legacy System: Coping with sucess “IEEE Software, january, 1995

Brodie, M. L.; and Stonebraker, M.; “DARWIN: On the Incremetal Migration
of Legacy Information Systems,” Technical Memeorandum, Eletronics
Research Laboratory, College of Engineering, University of California, Berkeley,
March 1993,

Brodie, M. L.; and Stonebraker, M.; Migration Legacy Systems: Gateways, Interfaces
& the Incremental Approach, Morgan Kauffman, 1995

Camargo, V.V., e Penteado, R. Ap. D., “ Diretrizes para Engenharia Reversa
Orientada a Objetos de Sistemas COBOL com a utilizagio do Método Fusion/RE”
Universidade federal de Sdo Carlos - UFSCar - Depto de Computagio.

Canning, R, “The Maintenance ‘Iceberg’, *“ EDP Analyzer, vol. 10, no. 10, October 1972.

Cerdinley, E., abd Daf H., “Encapsulation,- na Issue for legacy Systems”

BT technology Journal, july 1993,

Chikofsky, E and Cross, J., “Reverse Engineering and Design Recovery —

A Taxonomy” IEEE Software, january 1990.

[10] Dedene, G.; DeVreese, J.; “Realities of Off-Shore Reengineering”, IEEE Software,

74

january 1995, pp. 35-45
[11] Gotlieb, L., “Leamning to Live with Legacy Systems” CMA, may 1993.

[12] Hanna, M., “Maintenance Burden Begging for a Remedy,” Datamation, April 1993,
pp33-63.

[13] Jacobson, Ivar; Fredrick Lindstrom - Re-engineering of old Systems to na Object-oriented
Architecture — OOPSLA 91, pp 340-350

[14] John, Bergey; Liam, O’Brien; Dennis, Smith — DoD Software Migration Planning
Technical Note CMU/SEI-2001-TN-012

[15] John, Bergey; Dennis, Smith; Nelson Weiderman — DoD Legacy System Migration
Guidelines - Technical Note CMU/SEI-2001-TN-013

[16] Mayers, C., “Legacy data Access” ANSA User Group Meeting,
Cambridge, England, April 1994.

[17] Nassif, R.; Mitchussen, D.; “ Issues and Approaches for Migration/Cohabitation
Between Legacy and New Systems”, SIGMOD *93, International Conference on
Management of Data — May 1993, pp 471-471

[18] Nimer, Fernando. Vale a pena investir em Orientagdo a Objetos, Developers

‘Magazine’, n. 12, pp 12-135, agosto 1997,

[19] Osborne, W.M. and E.J. Chikofsky, “Fitting Pieces to the Maintenance Puzzle,”,
IEEE Software, January 1990, pp.10-11.

[20] Roger S.Pressman - Software Engineering — A Practitioner’s Approache
Mc Graw Hill

[21} Rosana Teresina Vaccare Braga — “padrdes de Software a partir da Engenharia
Reversa de Sistemas Legados” — Tese de Dissertaciio — USP — S#o carlos
Novembro 1998.

[22] Santigo, Comella Dorda; Grace A Lewis; Pat Place; Dan, Plakosh; Robert C. Seacord
Incremental Modernization of Legacy Systems — Technical Note
CMU/SEI-2001-TN-006

75

(23] Sneed, H., “Planning the Reengineering of Legacy Systems,” IEEE Software, January
1995, pp.24-25.

[24] Schick. K., “The Key to Client/Server — Unlocking the Power legacy Systems
“Gartner Group Conference, February 1993,

[25] Swanson,E.B., “The Dimensions of Maintenance,”Proc.Second Intl. Conf.Sftware
Engineering,IEEE, October 1976,pp.492-497,

[26] Stephanie Wilkinson “ From the Dustbin, Cobol Rises - eWeek, May 28, 2001” 1
[27] William Ulrich — Legacy Systems Transformation Strategies — Ed. Prentice Hall

[28) Umar, Amjad - Application (Re)Engineering — Building Web-Based

Applications and Dealing with Legacies — Prentice Hall

[29] Wilkening, D. E.; Loyall, J. P.; Pitarys, M.J. ¢ Littlejohn, K. A - Reuse Approach

to Software Reengineering. Journal Systems Software, V.30 1995.

[30] WIGGERTS, T., BOSMA, H., AND FIELT, E. Scenarios for the identification of
objects in legacy systems. In 4th Working Conference on Reverse Engineering (1997),
IEEE Computer Society, pp. 24-32.

{317 Zanella, Ana Liicia. Apoio ao Ensino de Projeto de Software Orientado a Objetos
Baseado na Metodologia CRC, PRCRS, Plano de Estudo e Pesquisa, janeiro 1997,
http://tinos.pucrs.br/~azanella/mestrado/pep.htm

REFERENCIAS BIBLIOGRAFICAS RECOMENDADAS

[32] Coleman, D; Malan R., Letsinger, R., ”Object-Oriented Development at Work”
Prentice Hall -1995.

[33] Coleman, D; Amnold, P.; Bodoff, S.; Dollin, C.; Gilchrist, H.; Ayes,
F.; Jeremaes, P.; Desenvolvimento orientado a objetos: o método Fusion,

Rio de Janeiro, Campus,1996.

[34] Feltrim, V. D., ¢ Fortes, RP.M, e Silva, W. F., « Aspectos de validacfio do Método
de engenharia reversa Fusion-RE/I aplicado a um sistema Hipermidia, ICMC - USP

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

76

Georgia Tech's Reverse Engineering Group

http://www.cc.gatech.edu/reverse/

IEEE Computer Soctety TCSE Committee on Reverse Engineering and Reengineering

http://'www.Icse.org/revengs/

James Rumbaugh, Micheal Blagha, William Premerlani,
Frederick Eddy, William Lorensen - Object-Oriented Modeling and Design
Prentice-Hall

Masiero, P.C., e Germano, F.S.R., ¢ Braga, R.T.V.,
“A Confederation of Patterns for Resource management” ICMC — USP

Reverse Engineering and System Renovation

http://adam.wins.uva.nl/~x/reeng/REanno.html

Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz — Object-Oriented

Reengineering Patterns - 2003 Morgan Kaufmann Publishers

Technical Council on Sotfware Engineering Ferramentas Case
http://www.qucis.queensu.ca/Software-Engineering/vendor.html
Terekhov, Andrey A., “Automating language Conversion: A case Study”

St. Petersbug State University, LANT-TERCOM - St. Petrsburg, Russia,

Terekhov, Andrey A. ., “Automated extraction of classes from legacy
St. Petersbug State University, LANT-TERCOM — St. Petrsburg, Russia

